Table of Contents

The College of Engineering ... 3

Graduate Curricula .. 3

 Architectural Engineering .. 3
 Architectural Engineering PhD .. 7
 Chemical Engineering ... 12
 Chemical Engineering PhD .. 17
 Civil Engineering ... 22
 Civil Engineering PhD ... 28
 Computer Engineering .. 35
 Computer Engineering PhD ... 41
 Construction Management ... 47
 Cybersecurity .. 50
 Electrical Engineering ... 57
 Electrical Engineering PhD ... 63
 Electrical Engineering/Telecommunications Engineering ... 70
 Engineering Management ... 76
 Engineering Technology ... 79
 Environmental Engineering .. 85
 Environmental Engineering PhD ... 90
 Machine Learning Engineering .. 92
 Materials Science and Engineering ... 96
 Materials Science and Engineering PhD .. 100
 Mechanical Engineering and Mechanics .. 106
 Mechanical Engineering and Mechanics PhD .. 110
 Nanomaterials ... 113
 Peace Engineering ... 115
 Robotics and Autonomy ... 117
 Vince and Judy Vidas Program in Systems Engineering ... 121
 the Internet of Things .. 123

Minors .. 125

 Graduate Minor in Computational Engineering .. 125

Certificates ... 125

 Certificate in Construction Management .. 125
 Certificate in Engineering Management .. 125
 Post-Baccalaureate Certificate in Hardware Systems Engineering .. 126
 Post-Baccalaureate Certificate in Healthy Indoor Environments .. 127
 Post-Baccalaureate Certificate in Naval Engineering ... 128
 Post-Baccalaureate Certificate in Peace Engineering ... 129
 Certificate in Pharmaceutical and Medical Device Manufacturing .. 130
The College of Engineering

About the College

The College of Engineering prepares a new generation of engineers dedicated to discovery and the application of technology to promote economic development and improve quality of life.

Drexel University’s College of Engineering is guided by five core values that shape the curriculum and experience for all students: excellence in academics and research; personal, intellectual and professional development; diversity; innovation and exploration; internal and external collaborations and partnerships. We provide a research agenda for our PhD students that addresses society’s most pressing challenges regionally, nationally and globally. Our Master of Science students are trained in strategic leadership and entrepreneurial risk-taking to address the opportunities and challenges of a rapidly changing industry.

The graduate programs at Drexel College of Engineering integrate evolving engineering science with the growing fields of engineering applications and processes. As Drexel moves through the 21st century, the College of Engineering will continue to offer students a diverse academic learning and research environment, while continuing to build on its national reputation for excellence in engineering and research.

Majors

• Architectural Engineering (MSAE) (p. 3)
• Architectural Engineering (PhD) (p. 7)
• Chemical Engineering (MS) (p. 12)
• Chemical Engineering (PhD) (p. 17)
• Civil Engineering (MSCE) (p. 22)
• Civil Engineering (PhD) (p. 28)
• Computer Engineering (MS) (p. 35)
• Computer Engineering (PhD) (p. 41)
• Construction Management (MS) (p. 47)
• Cybersecurity (MS) (p. 50)
• Electrical Engineering (MS) (p. 57)
• Electrical Engineering (PhD) (p. 63)
• Electrical/Telecommunications Engineering (MS) (p. 70)
• Engineering (ME) (http://catalog.drexel.edu/graduate/collegeofengineering/engineeringmasterofengineering/)
• Engineering Management (MS) (p. 76)
• Engineering Technology (MS) (p. 79)
• Environmental Engineering (MS) (p. 81)
• Environmental Engineering (PhD) (p. 85)
• Machine Learning Engineering (MSMLE) (p. 90)
• Materials Science and Engineering (MS) (p. 92)
• Materials Science and Engineering (PhD) (p. 96)
• Mechanical Engineering and Mechanics (MS) (p. 100)
• Mechanical Engineering and Mechanics (PhD) (p. 106)
• Nanomaterials (MS) (p. 110)
• Peace Engineering (MS) (p. 113)
• Robotics and Autonomy (MS) (p. 115)
• Systems Engineering (MS) (p. 117)
• the Internet of Things (MS) (p. 121)

Minors

• Computational Engineering (p. 123)

Certificates

• Construction Management (p. 125)
• Engineering Management (p. 125)
• Hardware Systems Engineering (p. 126)
• Healthy Indoor Environments (p. 127)
• NEW: Industry Systems
• Naval Engineering (p. 128)
• Peace Engineering (p. 129)
• Pharmaceutical and Medical Device Manufacturing (p. 130)
• Planning and Design of Sustainable Infrastructure (p. 131)
• Real Estate (p. 132)
• Smart Building Systems (p. 132)
• NEW: Software Systems Engineering
• Structures Forensics (p. 133)
• Sustainability and Green Construction (p. 134)
• Systems Design and Development (p. 134)
• Systems Engineering (p. 135)
• Systems Engineering Analysis (p. 136)
• Systems Engineering Integrated Logistics (p. 137)
• Systems Reliability Engineering (p. 138)

About Graduate Co-op

Drexel University’s long tradition in the field of experiential learning has now been extended into many of its master’s programs in science, business, and engineering.

This option, called the Graduate Co-op Program (http://www.drexel.edu/scdc/co-op/graduate/) (GCP), provides students with the opportunity to gain work experience directly related to their career goals. Employment typically lasts six months. It is important to note that the GCP program does not guarantee a job. It is a market-driven process for the candidates as well as employers. GCP provides the tools and contacts; the student must qualify for the job on the basis of merit, qualifications, and skills.

Further information on the GCP program is available at the Drexel Steinbright Career Development Center. (http://www.drexel.edu/scdc/)

Architectural Engineering

Major: Architectural Engineering
Degree Awarded: Master of Science in Architectural Engineering (MSAE)
Calendar Type: Quarter
Minimum Required Credits: 45.0 (MSAE)
Co-op Option: None
Classification of Instructional Programs (CIP) code: 14.0401
Standard Occupational Classification (SOC) code: 11-9041

About the Program
Architectural Engineering is inherently an interdisciplinary enterprise that is centered on the design, construction, and operation of the built environment. Architectural Engineering MS graduates may include students with expertise in one or more of the following sub-disciplines (usually housed in civil/environmental engineering and elsewhere in traditional disciplinary constructs or newly developing fields of focus or expertise):

- Building energy efficiency and alternative energy
- Indoor environmental quality

Our graduates are engineers and researchers trained in integrated building design and operation practices, who can work on interdisciplinary teams that are able to develop creative solutions combined with technological advances to produce functional, efficient, attractive and sustainable building infrastructure.

Additional Information
For more information, visit the Department of Civil, Architectural and Environmental Engineering (https://drexel.edu/engineering/academics/departments/civil-architectural-environmental-engineering/) webpage.

Admission Requirements
Applicants to the MS Architectural Engineering must meet the following requirements:

- A BS in Engineering OR
- For students without an Engineering degree, the following courses, or their approved equivalents from other departments, will meet these requirements:
 - *Introduction to Fluid Flow* – CIVE 320
 - *Introduction to Thermodynamics* – ENGR 210
 - *Heat Transfer* – MEM 345 – for Building Energy students
 - *General Chemistry II* – CHEM 102 – for Indoor Environmental Quality students

The application package will include:

- undergraduate and graduate transcripts
- three letters of recommendation from faculty or professionals who can evaluate the applicant’s promise as a graduate student
- GRE scores (optional)
- a written statement of career and educational goals

Competitive applicants will possess an undergraduate GPA of 3.30 or higher and GRE scores above the 60th percentile.

Degree Requirements
The goal of the MS in Architectural Engineering (AE) is to produce graduates who have a solid understanding of the Architectural Engineering discipline as well as an understanding of the interrelationships between the major AE sub-disciplines. Graduates will have demonstrated the ability and capacity to apply that understanding and skill, and the curriculum and project requirements are designed to provide to the students and then ask them to demonstrate the ability to effectively engage in professional-level performance.

<table>
<thead>
<tr>
<th>Required Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Courses for all AE students</td>
</tr>
<tr>
<td>AE 510</td>
</tr>
<tr>
<td>AE 544</td>
</tr>
<tr>
<td>AE 550</td>
</tr>
<tr>
<td>AE 551</td>
</tr>
<tr>
<td>MEM 591</td>
</tr>
<tr>
<td>MEM 592</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Graduate Electives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Must complete at least 9.0 credits in one of the two themes below:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Building Energy Theme</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE 552</td>
</tr>
<tr>
<td>CHE 513</td>
</tr>
<tr>
<td>CHE 525</td>
</tr>
<tr>
<td>MEM 611</td>
</tr>
</tbody>
</table>
MEM 612 Convection Heat Transfer
MEM 621 Foundations of Fluid Mechanics

Indoor Air Quality (IAQ) Theme

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE 561</td>
<td>Airflow Simulation in Built Environment</td>
</tr>
<tr>
<td>CHE 525</td>
<td>Transport Phenomena I</td>
</tr>
<tr>
<td>ENVE 560</td>
<td>Fundamentals of Air Pollution Control</td>
</tr>
<tr>
<td>ENVE 660</td>
<td>Chemical Kinetics in Environmental Engineering</td>
</tr>
<tr>
<td>ENV 501</td>
<td>Chemistry of the Environment</td>
</tr>
<tr>
<td>MEM 621</td>
<td>Foundations of Fluid Mechanics</td>
</tr>
</tbody>
</table>

Additional Electives

<table>
<thead>
<tr>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.0</td>
</tr>
</tbody>
</table>

Total Credits

<table>
<thead>
<tr>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>45.0</td>
</tr>
</tbody>
</table>

* The balance of the required 45.0 credits, a maximum of 18.0 credits, will be electives approved by the student’s advisor and the departmental graduate advisor in any of the following subjects: AE, CHE, CHEC, CHEM, CIVE, ENVE, ENSS, ENVP, ENVS, MATH, MEM (500-699).

Sample Plan of Study

Indoor Air Quality - Sample Plan of Study

First Year

<table>
<thead>
<tr>
<th>Term</th>
<th>Credits</th>
<th>Fall Credits</th>
<th>Winter Credits</th>
<th>Spring Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
<td>AE 544</td>
<td>MEM 591</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>Revised credit</td>
</tr>
<tr>
<td>Winter</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>Revised credit</td>
</tr>
<tr>
<td>Spring</td>
<td></td>
<td></td>
<td>3.0</td>
<td>Revised credit</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.0</td>
<td>Revised credit</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Term</th>
<th>Credits</th>
<th>Fall Credits</th>
<th>Winter Credits</th>
<th>Spring Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
<td>ENVS 501</td>
<td>MEM 621</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>Revised credit</td>
</tr>
<tr>
<td>Winter</td>
<td></td>
<td>MEM 611</td>
<td>Free Elective</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>Revised credit</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Revised credit</td>
</tr>
</tbody>
</table>

Total Credits 45

Undergraduate Course Prerequisites for students without an Engineering Degree:

The following courses, or their approved equivalents from other departments, will meet these requirements:

- CIVE 320 - Fundamental Fluids
- CHEM 102 - Basic Chemistry
- ENGR 210 - Thermodynamics

Building Energy - Sample Plan of Study

First Year

<table>
<thead>
<tr>
<th>Term</th>
<th>Credits</th>
<th>Fall Credits</th>
<th>Winter Credits</th>
<th>Spring Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
<td>AE 550</td>
<td>MEM 591</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>Revised credit</td>
</tr>
<tr>
<td>Winter</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>Revised credit</td>
</tr>
<tr>
<td>Spring</td>
<td></td>
<td>MEM 611</td>
<td>Free Elective</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>Revised credit</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Term</th>
<th>Credits</th>
<th>Fall Credits</th>
<th>Winter Credits</th>
<th>Spring Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
<td>AE 544</td>
<td>CHE 513</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>Revised credit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CHE 513</td>
<td>MEM 621</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.0</td>
<td>3.0</td>
<td>Revised credit</td>
</tr>
</tbody>
</table>

Total Credits 45

Undergraduate Course Prerequisites for students without an Engineering Degree

The following courses, or their approved equivalents from other departments, will meet these requirements:
Civil, Architectural and Environmental Engineering Faculty

Abieyuwa Aghayere, PhD (University of Alberta). Professor. Structural design - concrete, steel and wood; structural failure analysis; retrofitting of existing structures; new structural systems and materials; engineering education.

Ivan Bartoli, PhD (University of California, San Diego). Associate Professor. Non-destructive evaluation and structural health monitoring; dynamic identification, stress wave propagation modeling.

Shannon Capps, PhD (Georgia Institute of Technology). Associate Professor. Atmospheric chemistry; data assimilation; advanced sensitivity analysis; inverse modeling.

S.C. Jonathan Cheng, PhD (West Virginia University). Associate Professor. Soil mechanics; geosynthetics; geotechnical engineering; probabilistic design; landfill containments; engineering education.

Yaghoob (Amir) Farnam, PhD (Purdue University). Associate Professor. Advanced and sustainable infrastructure materials; multifunctional, self-responsive and bioinspired construction materials; advanced multiscale manufacturing; characterization, and evaluation of construction materials; durability of cement-based materials.

Patricia Gallagher, PhD (Virginia Polytechnic Institute and State University). Professor. Geotechnical and geoenvironmental engineering; soil improvement; soil improvement; recycled materials in geotechnics.

Patrick Gurian, PhD (Carnegie-Mellon University). Professor. Risk analysis of environmental and infrastructure systems; novel adsorbent materials; environmental standard setting; Bayesian statistical modeling; community outreach and environmental health.

Charles N. Haas, PhD (University of Illinois, Urbana-Champaign) Program Head for Environmental Engineering; L. D. Betz Professor of Environmental Engineering. Water treatment; risk assessment; bioterrorism; environmental modeling and statistics; microbiology; environmental health.

Simi Hoque, PhD (University of California - Berkeley) Program Head for Architectural Engineering. Professor. Computational methods to reduce building energy and environmental impacts, urban metabolism, thermal comfort, climate resilience.

Y. Grace Hsuan, PhD (Imperial College). Professor. Durability of polymeric construction materials; advanced construction materials; and performance of geosynthetics.

Joseph B. Hughes, PhD (University of Iowa). Distinguished University Professor. Biological processes and applications of nanotechnology in environmental systems.

L. James Lo, PhD (University of Texas at Austin). Associate Professor. Architectural fluid mechanics; building automation and autonomy; implementation of natural and hybrid ventilation in buildings; airflow distribution in buildings; large-scale air movement in an urban built environment; building and urban informatics; data-enhanced sensing and control for optimal building operation and management; novel data gathering methods for building/urban problem solving; interdisciplinary research on occupant behaviors in the built environment.

Franco Montalto, PhD (Cornell University). Professor. Effects of built infrastructure on societal water needs, ecohydrologic patterns and processes, ecological restoration, green design, and water interventions.

Mira S. Olson, PhD (University of Virginia). Associate Professor. Peace engineering; source water quality protection and management; contaminant and bacterial fate and transport; community engagement.

Miguel A. Pando, PhD (Virginia Polytechnic Institute and State University). Associate Professor. Laboratory testing of geomaterials; geotechnical aspects of natural hazards; soil-structure-interaction; geotechnical engineering.

Matthew Reichenbach, PhD (University of Austin at Texas). Assistant Teaching Professor. Design and behavior of steel structures, bridge engineering, structural stability

Michael Ryan, PhD (Drexel University) Associate Department Head of Graduate Studies. Associate Teaching Professor. Microbial Source Tracking (MST); Quantitative Microbial Risk Assessment (QMRA); dynamic engineering systems modeling; molecular microbial biology; phylogenetics; metagenomics; bioinformatics; environmental statistics; engineering economics; microbiology; potable and wastewater quality; environmental management systems.

Christopher Sales, PhD (University of California, Berkeley). Associate Professor. Environmental microbiology and biotechnology; biodegradation of environmental contaminants; microbial processes for energy and resource recovery from waste; application of molecular biology, analytical chemistry and bioinformatic techniques to study environmental biological systems.
Robert Swan Teaching Professor. Geotechnical and geosynthetic engineering; soil/geosynthetic interaction and performance; laboratory and field geotechnical/geosynthetic testing.

Sharon Walker, PhD (Yale University) Dean, College of Engineering. Distinguished Professor. Water quality systems engineering

Michael Waring, PhD (University of Texas at Austin) Department Head, Civil, Architectural, and Environmental Engineering. Associate Professor. Indoor air quality and building sustainability; indoor particulate matter fate and transport; indoor chemistry and particle formation; secondary impacts of control technologies and strategies.

Jin Wen, PhD (University of Iowa). Professor. Architectural engineering; Building Energy Efficiency; Intelligent Building; Net-zero Building; and Indoor Air Quality.

Aspasia Zerva, PhD (University of Illinois, Urbana-Champaign). Professor. Earthquake engineering; mechanics; seismology; structural reliability; system identification; advanced computational methods in structural analysis.

Emeritus Faculty

A. Emin Aktan, PhD (University of Illinois, Urbana-Champaign). Professor Emeritus. Health monitoring and management of large infrastructures with emphasis on health monitoring.

Eugenia Ellis, PhD, AIA (Virginia Polytechnic Institute and State University). Professor Emerita. Natural and electrical light sources and effects on biological rhythms and health outcomes; ecological strategies for smart, sustainable buildings of the nexus of health, energy, and technology.

Ahmad Hamid, PhD (McMaster University). Professor Emeritus. Engineered masonry; seismic behavior, design and retrofit of masonry structures; development of new materials and building systems.

Harry G. Harris, PhD (Cornell University). Professor Emeritus. Structural models; dynamics of structures, plates and shells; industrialized building construction.

Joseph P. Martin, PhD (Colorado State University). Professor Emeritus. Geotechnical and geoenvironmental engineering; hydrology; transportation; waste management.

James E. Mitchell, MArch (University of Pennsylvania). Professor Emeritus. Architectural engineering design; building systems; engineering education.

Joseph V. Mullin, PhD (Pennsylvania State University). Teaching Professor Emeritus. Structural engineering; failure analysis; experimental stress analysis; construction materials; marine structures.

Architectural Engineering PhD

Major: Architectural Engineering
Degree Awarded: Doctor of Philosophy (PhD)
Calendar Type: Quarter
Minimum Required Credits: 90.0
Co-op Option: None
Classification of Instructional Programs (CIP) code: 14.0401
Standard Occupational Classification (SOC) code: 11-9041

About the Program

Architectural Engineering is inherently an interdisciplinary enterprise that is centered on the design, construction, and operation of the built environment. Architectural Engineering PhD graduates may include students with expertise in one or more of the following sub-disciplines (usually housed in civil/environmental engineering and elsewhere in traditional disciplinary constructs or newly developing fields of focus or expertise):

• Building energy efficiency and alternative energy
• Indoor environmental quality

Our graduates are engineers and researchers trained in integrated building design and operation practices, who can work on interdisciplinary teams that are able to develop creative solutions combined with technological advances to produce functional, efficient, attractive and sustainable building infrastructure.

Additional Information

For more information, visit the Department of Civil, Architectural and Environmental Engineering (https://drexel.edu/engineering/academics/departments/civil-architectural-environmental-engineering/) webpage.
Admission Requirements

Applicants to the PhD in Architectural Engineering must meet the following requirements:

- A BS in Engineering OR
- For students without an Engineering degree, the following courses, or their approved equivalents from other departments, will meet these requirements:
 - Introduction to Fluid Flow – CIVE 320
 - Introduction to Thermodynamics – ENGR 210
 - Heat Transfer – MEM 345 – for Building Energy students
 - General Chemistry II – CHEM 102 – for Indoor Environmental Quality students

The application package will include:

- undergraduate and graduate transcripts
- three letters of recommendation from faculty or professionals who can evaluate the applicant’s promise as a graduate student
- GRE scores (optional)
- a written statement of career and educational goals.

Competitive applicants will possess an undergraduate GPA of 3.30 or higher and GRE scores above the 60th percentile.

Degree Requirements

The following general requirements must be satisfied to complete the PhD in Architectural Engineering:

- Establishment of plan of study with PhD advisor
- Completion of 90.0 quarter credits (or 45 credit hour post-MS), including taking certain qualifying courses
- Passing of PhD candidacy exam
- Approval of PhD dissertation proposal
- Defense of PhD dissertation

Students entering the PhD program with an approved Master of Science (MS) degree must take 45.0 credit hours of coursework and research to be approved by their PhD advisor. Students entering the PhD program without an approved MS degree can either complete the 45-credit hour Master of Science in Architectural Engineering (MSAE) degree followed by an additional 45 credit hours post MSAE, or they can choose not to obtain the MSAE and complete only the required "core" courses for the PhD degree within the completion of a total 90 required credit hours. Students with previous graduate coursework, may transfer no ore than 15 quarter credits (equivalent to 12 semester credits) from approved institutions if deemed equivalent to courses offered within the department.

All PhD students are required to meet all milestones of the program. The total credit amount, candidacy exam, and dissertation are University Requirements. Additional requirements are determined by the department offering the degree.

Qualifying Courses

To satisfy the qualifying requirements, students must earn a grade of B+ or better in the six required "core" courses taken at Drexel and must earn an overall GPA of 3.5 or better in these courses.

Undergraduate courses, independent studies, research credits, and courses from other departments cannot be counted toward the qualifying requirements. Student progress toward these requirements will be assessed by the PhD advisor following the student's first year in the PhD program. For more information visit the Architectural Engineering’s PhD Program Requirements page (https://drexel.edu/engineering/academics/graduate-programs/doctoral/architectural-engineering/).

Candidacy Exam

After approximately one year of study beyond the MS degree or completion of the required “core” courses, if their GPA is # 3.5, PhD students can and must take a candidacy examination, consisting of written and oral parts. Successful completion of the candidacy exam enables a student to progress from the designation of PhD student to PhD candidate. The candidacy exam represents the first exam in a series of three that comprise the PhD curriculum.

The Architectural Engineering candidacy examination serves to define the student’s research domain and to evaluate the student’s knowledge and understanding of various fundamental and foundational results in that domain. The student is expected to be able to read, understand, analyze, and explain advanced technical results in a specialized area of Architectural Engineering at an adequate level of detail. The candidacy examination will evaluate those abilities by asking a student to summarize literature and/or undertake a small research project. The student will prepare a written summary of review and/or project results, present the outcome orally, and answer questions about the report or presentation. The candidacy
examination committee will evaluate the written report, the oral presentation, and the student’s answers. The candidacy committee membership must follow the requirements of the Graduate College and must be approved by the Graduate College.

Students with a GPA < 3.5 do not meet eligibility requirements to sit for the candidacy exam. In this case, a student may petition the Graduate Advisor to take a Preliminary Written Exam (PWE). A committee will be formed consisting of three members selected from the pool of faculty in the field of research interest of the student and the pool of faculty who taught the courses taken by the student during the preceding terms. An exam will be developed consisting of a series of questions/problems prepared by the three written exam committee members. The written exam, while fixed in duration, may be composed of several different problem-solving assignments. Additionally, the exam may be closed book or open book or a combination thereof. The student will consult with the advisor to become acquainted with the specific rules of the exam. The exam will be graded by the PWE Committee to determine if the student may sit for the candidacy exam.

Dissertation Proposal

After successfully completing the candidacy examination, the PhD candidate must prepare a dissertation proposal that outlines, in detail, the specific problems that will be solved during the research that is conducted to complete the PhD dissertation. The quality of the dissertation proposal should be at the level of a peer-reviewed proposal to a federal funding agency, or a publishable scientific paper. The candidate is responsible for sending the dissertation proposal to the PhD committee no less than two weeks before the scheduled oral presentation. The PhD committee membership need not be the same as the candidacy exam committee, but follows the same requirements and must be approved by the Graduate College. The oral presentation involves a presentation by the candidate followed by a period during which the committee will ask questions. The committee will then determine if the dissertation proposal has been accepted. The dissertation proposal can be repeated at most once if the proposal was not accepted.

A dissertation proposal must be approved within two years of becoming a PhD candidate. After approval of the dissertation proposal, the committee may meet to review the progress of the research.

Dissertation Defense

After successfully completing the dissertation proposal, the PhD candidate must conduct the necessary research and publish the results in a PhD dissertation. The dissertation must be submitted to the PhD committee no less than two weeks prior to the scheduled oral defense. The oral presentation by the candidate is open to the public, followed by an unspecified period during which the committee will ask questions. The question-and-answer period is not open to the public. The committee will then determine if the candidate has passed or failed the examination. If not passed, the candidate will be granted one more chance to pass the final defense.

The PhD degree is awarded for original research on a significant Architectural Engineering problem. Graduate students will work closely with individual faculty members to pursue the PhD degree. PhD dissertation research is usually supported by a research grant from a government agency or an industrial contract. Many doctoral students take three to five years of full-time graduate study to complete their degrees.

Program Requirements

<table>
<thead>
<tr>
<th>Post Bachelor of Science Degree</th>
<th>18.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Core Courses</td>
<td></td>
</tr>
<tr>
<td>AE 510 Intelligent Buildings</td>
<td></td>
</tr>
<tr>
<td>AE 544 Building Envelope Systems</td>
<td></td>
</tr>
<tr>
<td>AE 550 Comfort Analysis and Indoor Air Quality</td>
<td></td>
</tr>
<tr>
<td>AE 551 Building Energy Systems I</td>
<td></td>
</tr>
<tr>
<td>MEM 591 Applied Engr Analy Methods I</td>
<td></td>
</tr>
<tr>
<td>MEM 592 Applied Engr Analy Methods II</td>
<td></td>
</tr>
<tr>
<td>Technical Elective Requirements</td>
<td>0.0-30.0</td>
</tr>
<tr>
<td>To be determined by the PhD faculty advisor and approved by the graduate advisor</td>
<td></td>
</tr>
<tr>
<td>500+ level courses in AE, CIVE, ENVE, or other courses approved by the graduate advisor</td>
<td></td>
</tr>
<tr>
<td>Research Requirements</td>
<td>71.0-140.0</td>
</tr>
<tr>
<td>Please note that the number of research credits may be reduced based on the number of Technical Electives that are required.</td>
<td></td>
</tr>
<tr>
<td>CIVE 997 Research</td>
<td></td>
</tr>
<tr>
<td>Dissertation Requirements</td>
<td>1.0-12.0</td>
</tr>
<tr>
<td>CIVE 998 Ph.D. Dissertation</td>
<td></td>
</tr>
<tr>
<td>Total Credits</td>
<td>90.0-200.0</td>
</tr>
</tbody>
</table>

Post Master of Science Degree	
-------------------------------	44.0-100.0
Technical Elective Requirements	0.0-30.0
To be determined by the PhD faculty advisor and approved by the graduate advisor	
500+ level courses in AE, CIVE, ENVE, or other courses approved by the graduate advisor	
Research Requirements	
Please note that the number of research credits may be reduced based on the number of Technical Electives that are required	
CIVE 997 Research	
Sample Plan of Study

Upon entering the PhD program, each student will be assigned an academic advisor, and with the help of the advisor will develop and file a plan of study (which can be brought up to date when necessary). The plan of study should be filed with the graduate advisor and uploaded to the E-Forms system no later than the end of the first term. The Eforms (https://gradcollege.irt.drexel.edu/) system will be used to track program progression and milestones. Sample Plans of Study are presented below:

Post Bachelor of Science Degree

<table>
<thead>
<tr>
<th>First Year</th>
<th>Fall</th>
<th>Credits Winter</th>
<th>Credits Spring</th>
<th>Credits Summer</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE 544</td>
<td>3.0</td>
<td>AE 510</td>
<td>3.0 AE 551</td>
<td>3.0 Vacation</td>
<td>0.0</td>
</tr>
<tr>
<td>AE 550</td>
<td>3.0</td>
<td>CIVE 997</td>
<td>3.0 CIVE 997</td>
<td>6.0</td>
<td></td>
</tr>
<tr>
<td>MEM 591</td>
<td>3.0</td>
<td>MEM 592</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Fall</th>
<th>Credits Winter</th>
<th>Credits Spring</th>
<th>Credits Summer</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVE 997</td>
<td>9.0</td>
<td>CIVE 997</td>
<td>9.0 CIVE 997</td>
<td>9.0 Vacation</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th>Fall</th>
<th>Credits Winter</th>
<th>Credits Spring</th>
<th>Credits Summer</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVE 997</td>
<td>9.0</td>
<td>CIVE 997</td>
<td>9.0 CIVE 997</td>
<td>9.0 Vacation</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

Fourth Year	Fall	Credits			
-------------	------	---------			
CIVE 997	6.0				
CIVE 998	3.0				
		9			

Post Bachelor of Science Degree

<table>
<thead>
<tr>
<th>First Year</th>
<th>Fall</th>
<th>Credits Winter</th>
<th>Credits Spring</th>
<th>Credits Summer</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical Electives</td>
<td>6.0</td>
<td>Technical Electives</td>
<td>6.0</td>
<td>Technical Electives</td>
<td>6.0 Vacation</td>
</tr>
<tr>
<td>CIVE 997</td>
<td>3.0</td>
<td>CIVE 997</td>
<td>3.0 CIVE 997</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

Second Year	Fall	Credits Winter	Credits		
-------------	------	----------------	---------		
CIVE 997	9.0	CIVE 997	6.0		
		CIVE 998	3.0		
			9		
			9		

Civil, Architectural and Environmental Engineering Faculty

Abieyuwa Aghayere, PhD (*University of Alberta*). Professor. Structural design - concrete, steel and wood; structural failure analysis; retrofitting of existing structures; new structural systems and materials; engineering education.

Ivan Bartoli, PhD (*University of California, San Diego*). Associate Professor. Non-destructive evaluation and structural health monitoring; dynamic identification, stress wave propagation modeling.

Shannon Capps, PhD (*Georgia Institute of Technology*). Associate Professor. Atmospheric chemistry; data assimilation; advanced sensitivity analysis; inverse modeling.

S.C. Jonathan Cheng, PhD (*West Virginia University*). Associate Professor. Soil mechanics; geosynthetics; geotechnical engineering; probabilistic design; landfill containments; engineering education.
Yaghoob (Amir) Farnam, PhD (Purdue University). Associate Professor. Advanced and sustainable infrastructure materials; multifunctional, self-responsive and bioinspired construction materials; advanced multiscale manufacturing; characterization, and evaluation of construction materials; durability of cement-based materials.

Patricia Gallagher, PhD (Virginia Polytechnic Institute and State University). Professor. Geotechnical and geoenvironmental engineering; soil improvement; soil improvement; recycled materials in geotechnics.

Patrick Gurian, PhD (Carnegie-Mellon University). Professor. Risk analysis of environmental and infrastructure systems; novel adsorbent materials; environmental standard setting; Bayesian statistical modeling; community outreach and environmental health.

Charles N. Haas, PhD (University of Illinois, Urbana-Champaign) Program Head for Environmental Engineering; L. D. Betz Professor of Environmental Engineering. Water treatment; risk assessment; bioterrorism; environmental modeling and statistics; microbiology; environmental health.

Simi Hoque, PhD (University of California - Berkeley) Program Head for Architectural Engineering. Professor. Computational methods to reduce building energy and environmental impacts, urban metabolism, thermal comfort, climate resilience.

Y. Grace Hsuan, PhD (Imperial College). Professor. Durability of polymeric construction materials; advanced construction materials; and performance of geosynthetics.

Joseph B. Hughes, PhD (University of Iowa). Distinguished University Professor. Biological processes and applications of nanotechnology in environmental systems.

L. James Lo, PhD (University of Texas at Austin). Associate Professor. Architectural fluid mechanics; building automation and autonomy; implementation of natural and hybrid ventilation in buildings; airflow distribution in buildings; large-scale air movement in an urban built environment; building and urban informatics; data-enhanced sensing and control for optimal building operation and management; novel data gathering methods for building/urban problem solving; interdisciplinary research on occupant behaviors in the built environment.

Franco Montalto, PhD (Cornell University). Professor. Effects of built infrastructure on societal water needs, ecohydrologic patterns and processes, ecological restoration, green design, and water interventions.

Mira S. Olson, PhD (University of Virginia). Associate Professor. Peace engineering; source water quality protection and management; contaminant and bacterial fate and transport; community engagement.

Miguel A. Pando, PhD (Virginia Polytechnic Institute and State University). Associate Professor. Laboratory testing of geomaterials; geotechnical aspects of natural hazards; soil-structure-interaction; geotechnical engineering.

Matthew Reichenbach, PhD (University of Austin at Texas). Assistant Teaching Professor. Design and behavior of steel structures, bridge engineering, structural stability

Michael Ryan, PhD (Drexel University) Associate Department Head of Graduate Studies. Associate Teaching Professor. Microbial Source Tracking (MST); Quantitative Microbial Risk Assessment (QMRA); dynamic engineering systems modeling; molecular microbial biology; phylogenetics; metagenomics; bioinformatics; environmental statistics; engineering economics; microbiology; potable and wastewater quality; environmental management systems.

Christopher Sales, PhD (University of California, Berkeley). Associate Professor. Environmental microbiology and biotechnology; biodegradation of environmental contaminants; microbial processes for energy and resource recovery from waste; application of molecular biology, analytical chemistry and bioinformatic techniques to study environmental biological systems.

Robert Swan Teaching Professor. Geotechnical and geosynthetic engineering; soil/geosynthetic interaction and performance; laboratory and field geotechnical/geosynthetic testing.

Sharon Walker, PhD (Yale University) Dean, College of Engineering. Distinguished Professor. Water quality systems engineering

Michael Waring, PhD (University of Texas at Austin) Department Head, Civil, Architectural, and Environmental Engineering. Associate Professor. Indoor air quality and building sustainability; indoor particulate matter fate and transport; indoor chemistry and particle formation; secondary impacts of control technologies and strategies.

Jin Wen, PhD (University of Iowa). Professor. Architectural engineering; Building Energy Efficiency; Intelligent Building; Net-zero Building; and Indoor Air Quality.

Aspasia Zerva, PhD (University of Illinois, Urbana-Champaign). Professor. Earthquake engineering; mechanics; seismology; structural reliability; system identification; advanced computational methods in structural analysis.
Emeritus Faculty

A. Emin Aktan, PhD (University of Illinois, Urbana-Champaign). Professor Emeritus. Health monitoring and management of large infrastructures with emphasis on health monitoring.

Eugenia Ellis, PhD, AIA (Virginia Polytechnic Institute and State University). Professor Emerita. Natural and electrical light sources and effects on biological rhythms and health outcomes; ecological strategies for smart, sustainable buildings of the nexus of health, energy, and technology.

Ahmad Hamid, PhD (McMaster University). Professor Emeritus. Engineered masonry; seismic behavior, design and retrofit of masonry structures; development of new materials and building systems.

Harry G. Harris, PhD (Cornell University). Professor Emeritus. Structural models; dynamics of structures, plates and shells; industrialized building construction.

Joseph P. Martin, PhD (Colorado State University). Professor Emeritus. Geotechnical and geoenvironmental engineering; hydrology; transportation; waste management.

James E. Mitchell, MArch (University of Pennsylvania). Professor Emeritus. Architectural engineering design; building systems; engineering education.

Joseph V. Mullin, PhD (Pennsylvania State University). Teaching Professor Emeritus. Structural engineering; failure analysis; experimental stress analysis; construction materials; marine structures.

Chemical Engineering

Major: Chemical Engineering
Degree Awarded: Master of Science (MS)
Calendar Type: Quarter
Minimum Required Credits: 45.0
Co-op Option: Available for full-time, on-campus, master’s-level students
Classification of Instructional Programs (CIP) code: 14.0701
Standard Occupational Classification (SOC) code: 17-2041

About the Program

The graduate program in the Chemical and Biological Engineering department integrates current chemical engineering science with the growing fields of engineering applications and processes, emphasizing engineering design and scientific analysis. The department intends to develop broadly educated individuals who are knowledgeable in modern theories, cognizant of the behavior of engineering systems, and aware of current mathematical and engineering tools that are useful for the solution of problems in complex processes and systems, especially those in the fields of chemical, environmental, biochemical, and materials process engineering. Areas of particular strength include polymer science and engineering, energy and the environment, multiscale modeling and process systems engineering, and biological engineering.

Programs are arranged to meet the needs and interests of individual students. The plan of study is initially formulated in consultation with the departmental graduate advisor and subsequently guided by the thesis advisor.

A graduate co-op is available for the Master of Science program. For more information, visit the Steinbright Career Development Center's website (http://www.drexel.edu/scdc/co-op/graduate/).

Graduates have pursued a variety of careers ranging from faculty positions in academia to research and development in industry in the U.S. and overseas.

Additional Information

For more information about this program, visit Drexel University’s Department of Chemical and Biological Engineering (https://drexel.edu/engineering/academics/departments/chemical-biological-engineering/) webpage.

Admission Requirements

Students should fulfill Drexel University's general requirements for admission to graduate studies. The subjects normally included in an undergraduate program in chemical engineering provide a satisfactory background. Decisions regarding prerequisite qualifications for students who may be deficient in some areas are made after consultation with the departmental graduate advisor.

The core courses are designed for students with undergraduate training in chemical engineering; however, students with a background in biological sciences and engineering can also enroll in the core courses after completing the necessary basic engineering courses and disciplinary chemical engineering courses. Programs for such students are determined on an individual basis after consultation with the departmental graduate advisor.
Graduate study in Chemical Engineering is offered on a regular full-time basis and on a part-time basis. Details not covered in the following information may be obtained by contacting the departmental graduate advisor. The General (Aptitude) Test of the Graduate Record Examination (GRE) is required for applicants pursuing full-time study.

Financial Assistance
Financial aid in the form of teaching assistantships, research assistantships, and fellowship grants is available to qualified full-time PhD students. Awards are made annually on a competitive basis.

Additional Information
For more information on how to apply, visit Drexel's Admissions page for Chemical Engineering (http://www.drexel.edu/grad/programs/coe/chemical-engineering/).

Degree Requirements
In general, each program leading to the Master of Science in Chemical Engineering must meet the following requirements: total, 45.0 credits; core chemical engineering, 15.0 credits; technical electives, at least 15.0 credits; free electives, at most 6.0 credits; thesis or additional technical electives, 9.0 credits. Core courses in the chemical engineering master's program are listed below. A master's thesis is optional.

Thesis option: The thesis may be based on either a theoretical or an experimental investigation or both of limited scope but involving a significant degree of originality. The nature of the research may involve multidisciplinary areas such as biological engineering, materials processing and engineering, energy and the environment, and other topics. The scope and content of the thesis is guided by the thesis advisor. All students pursuing a master's with thesis must complete 9.0 credits of thesis research (CHE 898). At the discretion of the research advisor, up to 12.0 credits of independent study (CHE I799) can be used to fulfill the free and technical elective requirements.

Coursework-only (non-thesis) option: Students not pursuing master's with thesis must complete 24.0 credits of technical electives, 6.0 credits of free electives, and 15.0 credits of core chemical engineering. Students may take up to 21.0 credits of independent study (CHE I799) to fulfill the free and technical elective requirements although independent study is not required for a non-thesis master's. Non-thesis students may also take additional concentration electives beyond the required 15.0 credit series. Non-thesis students may not register for thesis research.

Concentration: All master's students must complete a 15.0 credit series of technical electives. Technical electives may be chosen from course offerings in chemical engineering, mathematics, science, and other engineering disciplines, and are subject to approval by the departmental graduate advisor. Free (non-concentration) electives need only be graduate level.

Co-op: Students have the option to pursue a co-op as part of their master's program. In conjunction with the Steinbright Career Development Center (http://drexel.edu/scdc/co-op/graduate/), students will be provided an overview of professionalism, resume writing, and the job search process. Co-op will be for a six-month position running in the summer/fall terms. Students will not earn academic credit for the co-op but will earn 9.0 non-academic co-op units per term.

Full-time students usually take the core courses in the first year. Other courses may be substituted for the core courses if equivalent courses are available and if the substitution is approved by the graduate advisor. Full-time students normally require a minimum of one calendar year to complete their study and research.

Program Requirements

<table>
<thead>
<tr>
<th>Required Core</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE 502</td>
<td>Mathematical Methods in Chemical Engineering</td>
<td>3.0</td>
</tr>
<tr>
<td>CHE 513</td>
<td>Chemical Engineering Thermodynamics I</td>
<td>3.0</td>
</tr>
<tr>
<td>CHE 525</td>
<td>Transport Phenomena I</td>
<td>3.0</td>
</tr>
<tr>
<td>CHE 543</td>
<td>Kinetics & Catalysis I</td>
<td>3.0</td>
</tr>
<tr>
<td>CHE 554</td>
<td>Process Systems Engineering</td>
<td>3.0</td>
</tr>
<tr>
<td>Technical Electives</td>
<td></td>
<td>15.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Thesis or No-Thesis Option</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>For Thesis Option:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHE 898</td>
<td>Master's Thesis</td>
<td>9.0</td>
</tr>
<tr>
<td>For No-Thesis Option:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technical Electives</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Free Electives</td>
<td></td>
<td>6.0</td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>45.0</td>
</tr>
</tbody>
</table>

* Choose from:
 - Any graduate course in the College of Engineering >=500 level
 - Any graduate course in STEM disciplines >=500 level
• Graduate courses in these disciplines, subject to advisor approval: AE, BIO, BMES, CAE, CHE (including CHE I799) CHEM, CIVE, CMGT, CS, DSCI, ECE, ECEC, ECET, ECES, EET, EGMT, ENSS, ENTP, ENV, ENVP, FDSC, GEO, MATE, MEM, PRMT, PROJ, REAL, SYSE, PENG, MATH, PHYS, SE

Facilities

Abrams Laboratory (Abrams)

Software:
• The Abrams group Github repository (https://github.com/cameronabrams)

Computational resources:
• Proteus, Drexel’s high-performance cluster
• NSF XSEDE (www.xsede.org)
• DoD HPCMP (www.hpc.mil)

Alvarez Research Group (Alvarez)

• Rheo Filament- VADER1000 - Filament Extensional Rheometer with forced convection oven
• TA DHR3 – Controlled Stress Rheometer with Electronic Heated Plates
• TA ARES G2 – Controlled Strain Rheometer with Forced Convection Oven
• Controlled Film Coater
• Gel Spinning Apparatus for continuous filament and fiber formation
• Microrheometer for measurement of dynamic transport of surfactant to fluid-fluid interfaces, including dilatational rheology of equilibrated surfaces.
• Supercritical Microtensiometer for measurement of surfactant transport to fluid-fluid interfaces at elevated pressures
• Nikon TE microscope with 3MP camera and various objectives.
• Fluigent - 4 port continuous pressure fluid pump

Nanomaterials for Energy Applications and Technology Laboratory (Baxter)

• Amplified Ti:Sapphire laser with time-resolved terahertz spectroscopy and femtosecond UV/vis/NIR transient absorption spectroscopy (Bossone 106)
• Solar simulator with monochromator and photovoltaic/photoelectrochemical test station
• Electrochemical impedance spectroscopy
• Layer-by-layer deposition robot
• Dip coater
• Spin coater
• Electrodeposition station
• Continuous flow microreactors

Biofuels Laboratory (Cairncross)

• Bubble column biodiesel reactors
• Recirculating heated oil baths
• Quartz crystal microbalance / heat conduction calorimeter (Masscal G1)
• Maxtek quartz crystal microbalance with phase lock oscillator
• Parr reactor

Nanocrystal Solar Laboratory (Fafarman)

• Two chamber fabrication glove box with separate air-purification for wet-chemical synthesis and dry-process fabrication steps, featuring HEPA filtered laminar flow air handling for class-1 cleanroom conditions in an inert atmosphere. In the wet-chemical fabrication chamber there are a spincoater, centrifuge, hot-plates and solid and liquid reagents. On the dry chamber side, there is an integrated thermal evaporator for depositing metal, and a UV-ozone cleaner.
• Custom built Schlenk vacuum/gas manifold, all necessary glassware, J-Kem precision temperature controllers and heating mantles
• Perkin Elmer Lambda 35 UV-vis spectrometer
• ThermoFisher Nicolet iS50R Fourier-transform vis-NIR-MIR absorption spectrometer covering spectral ranges 13000 – 600 and 25000 – 8000 1/cm
• Keithley dual-channel precision source-meter
• Crystalaser Q-switch laser, 300 mW at 532 nm
• Home-built 4-point probe station for thin film electrical conductivity
• 80 MHz digital oscilloscope
• Stanford Research Systems lock-in amplifier

Nanofibers for Energy Storage and Conversion Laboratory (Kalra)
• Four Electrospinning Stations (with core-shell spinning capability)
• Mbraun Dual User Glove Box
• Carver Heat Press
• Four Gamry Potentiostats (Ref 3000 and Interface 1000)
• 32-channel Maccor Battery Cycler, three 8-channel NEWARE Battery Cyclers
• Rotating Disc Electrode Test Station (Pine Instruments)
• Tube Furnaces/Convection Ovens/Vacuum Ovens/Ultrasonicator/Hot Plates/Precision Balances
• Environmental Chamber (Tenney) with high temperature/humidity control ranging from 25-200C and 5-95%RH and integrated with vapor permeation and EIS
• Thermo Fisher Nicolet IS50 FTIR Spectrometer equipped with in-operando battery/supercapacitor cells

Thin Films and Devices Laboratory (Lau)
• Chemical Vapor Deposition Thin Film Reactor System I
• Chemical Vapor Deposition Thin Film Reactor System II
• Chemical Vapor Deposition Rotating Bed Reactor System
• Denton Desktop High Vacuum Sputtering System
• Harrick RF Plasma Reactor
• Gamry Reference 600 Electrochemical Testing Station
• Gamry Interface 1000 Electrochemical Impedance Spectrometer
• Agilent Electrochemical Impedance Analyzer 4294A
• Solar Illuminator
• Nicolet 6700 FTIR Spectrometer
• Shimadzu UV-1800 UV-VIS Spectrophotometer
• Laurell Technologies Spin Coater
• Ramé-Hart 290 Goniometer
• Meiji MT5310L Microscope
• Vacuum Ovens/Hot Plates

Polymers and Composites Laboratory (Palmese)
• TA Instruments TGA Q50 Thermogravimetric Analyzer
• KSV Instruments CAM 200 Contact Angle and Surface Tension Meter
• TA Instruments DSC Q2000 Differential Scanning Calorimeter
• Instron 8872
• Thermo Nicolet Nexus 870 FTIR
• TA Instruments DMA Dynamic Mechanical Analysis
• Perkin Elmer DSC7 Differential Scanning Calorimeter
• Waters GPC/HPLC (RI, UV Detectors)
• Electrospinning station
• TA Instruments AR Rheometer
• Thinky planetary centrifugal mixer ARE-250
• Melt Press
• Portable Near Infrared Spectrometer
• Brookfield digital viscometer
• Glove Box
• Supercritical Dryer (2x)
• Dielectric Barrier Discharge (DBD) plasma reactor
Process Systems Engineering Laboratory (Soroush)
- Shimadzu GPC
- Mini-Reactors
- Agilent GC/MS
- Fluidized Sand Bath
- IKA-RCT Stirred Hotplate Reactors
- Olympus Microscope
- Shimadzu UV-Vis Spectrophotometer (UV-1700)

Electrochemical Interfaces and Catalysis Laboratory (Snyder)
- Millipore DI water system
- 302N Autolab Potentiostats (x2)
- Mettler Toledo Micro-Balance
- Ultracentrifuge
- 4 port Schlenk line
- 4 kW Ambrell Radio Frequency Induction Furnace

Tang Laboratory (Tang)
- Six-channel Bio-Logic SP-300 potentiostat with electrochemical impedance spectroscopy
- LC Technology dual-user glovebox with argon atmosphere. Includes oxygen and water analyzers, electronic feedthroughs, and integrated vacuum oven
- Coin cell crimper /decrimper for battery fabrication (TOB Battery)
- Automatic electrode film coater (TOB Battery)
- Tube furnace
- Vacuum oven
- Karl-Fischer titration apparatus (Mettler Toledo)
- Two rotating disk electrode test station (Pine Instruments) with rotating ring-disk accessories
- 32-channel battery cycler (Arbin)

Wrenn Laboratory (Wrenn)
- PTI, Inc. C-71 Time-Resolved Fluorescence Spectrometer (pulsed nitrogen and dye lasers)
- PTI, Inc. A-710 Steady State Fluorescence Spectrometer
- Brookhaven 90Plus Dynamic Light Scattering Apparatus
- Brookhaven Goniometer-based, Static Light Scattering Apparatus
- Perkin-Elmer BUV40XW0 UV-Visible Absorbance Spectrometer
- Zeiss Axioskop2 Fluorescence microscope
- Zeiss Ultraviolet Digital Image Analysis System (contains Orca Camera, Sony 17” monitor, and Axiovision II software)
- Beckman Coulter Allegra64 Centrifuge
- Misonix, Inc. XL2020 Sonicator

Chemical Engineering Faculty
Cameron F. Abrams, PhD (University of California, Berkeley). Professor. Molecular simulations in biophysics and materials; receptors for insulin and growth factors; and HIV-1 envelope structure and function.

Nicolas Alvarez, PhD (Carnegie Mellon University). Assistant Professor. Phototonic crystal defect chromatography; extensional rheology of polymer/polymer composites; surfactant/polymer transport to fluid and solid interfaces; aqueous lubrication; interfacial instabilities.

Jason Baxter, PhD (University of California, Santa Barbara). Professor. Solar cells, semiconductor nanomaterials, ultrafast spectroscopy.

Richard A. Cairncross, PhD (University of Minnesota). Associate Professor. Effects of microstructure on transport and properties of polymers; moisture transport and degradation on biodegradation on biodegradable polymers; production of biofuel.

Aaron Fafarman, PhD (Stanford University). Associate Professor. Photovoltaic energy conversion; solution-based synthesis of semiconductor thin films; colloidal nanocrystals; electromodulation and photomodulation spectroscopy.
Vibha Kalra, PhD (Cornell University). Associate Professor. Electrodes for energy storage and conversion; supercapacitors; Li-S batteries; fuel cells; flow batteries; electrospinning for nanofibers; molecular dynamics simulations; Nanotechnology, polymer nanocomposites.

Kenneth K.S. Lau, PhD (Massachusetts Institute of Technology) Associate Department Head. Professor. Surface science; nanotechnology; polymer thin films and coatings; chemical vapor deposition.

Raj Mutharasan, PhD (Drexel University) Frank A, Fletcher Professor. Biochemical engineering; cellular metabolism in bioreactors; biosensors.

Giuseppe R. Palmese, PhD (University of Delaware). George B Francis Professor. Reacting polymer systems; nanostructured polymers; radiation processing of materials; composites and interfaces.

Joshua Snyder, PhD (Johns Hopkins University). Assistant Professor. Electrocatalysis (energy conversion/storage); heterogeneous catalysis corrosion (dealloying nanoporous metals); interfacial electrochemical phenomena in nanostructured materials; colloidal synthesis.

Masoud Soroush, PhD (University of Michigan). Professor. Process systems engineering; polymer engineering.

John H. Speidel, BSHE, MCHE (University of Delaware; Illinois Institute of Technology). Teaching Professor. Chemical process safety; process design engineering.

Maureen Tang, PhD (University of California, Berkeley). Assistant Professor. Batteries and fuel cells; nonaqueous electrochemistry; charge transport at interfaces.

Michael Walters, PhD (Drexel University). Assistant Teaching Professor. Undergraduate laboratory.

Stephen P. Wrenn, PhD (University of Delaware). Professor. Biomedical engineering; biological colloids; membrane phase behavior and cholesterol transport.

Emeritus Faculty

Chemical Engineering PhD

Major: Chemical Engineering
Degree Awarded: Doctor of Philosophy (PhD)
Calendar Type: Quarter
Minimum Required Credits: 90.0
Co-op Option: None
Classification of Instructional Programs (CIP) code: 14.0701
Standard Occupational Classification (SOC) code: 17-2041

About the Program

The graduate program in the Chemical and Biological Engineering department integrates current chemical engineering science with the growing fields of engineering applications and processes, emphasizing engineering design and scientific analysis. The department intends to develop broadly educated individuals who are knowledgeable in modern theories, cognizant of the behavior of engineering systems, and aware of current mathematical and engineering tools that are useful for the solution of problems in complex processes and systems, especially those in the fields of chemical, environmental, biochemical, and materials process engineering. Areas of particular strength include polymer science and engineering, energy and the environment, multiscale modeling and process systems engineering, and biological engineering.

Programs are arranged to meet the needs and interests of individual students. The plan of study is initially formulated in consultation with the departmental graduate advisor and subsequently guided by the thesis advisor.

Graduates have pursued a variety of careers ranging from faculty positions in academia to research and development in industry in the U.S. and overseas.

Additional Information

For more information about this program, visit Drexel University's Department of Chemical and Biological Engineering (https://drexel.edu/engineering/academics/departments/chemical-biological-engineering/) webpage.

Admission Requirements

Students should fulfill Drexel University's general requirements for admission to graduate studies. The subjects normally included in an undergraduate program in chemical engineering provide a satisfactory background. Decisions regarding prerequisite qualifications for students who may be deficient in some areas are made after consultation with the departmental graduate advisor.
The core courses are designed for students with undergraduate training in chemical engineering; however, students with a background in biological sciences and engineering can also enroll in the core courses after completing the necessary basic engineering courses and disciplinary chemical engineering courses. Programs for such students are determined on an individual basis after consultation with the departmental graduate advisor.

Graduate study in Chemical Engineering is offered on a regular full-time basis and on a part-time basis. Details not covered in the following information may be obtained by contacting the departmental graduate advisor. The General (Aptitude) Test of the Graduate Record Examination (GRE) is required for applicants pursuing full-time study.

Financial Assistance
Financial aid in the form of teaching assistantships, research assistantships, and fellowship grants is available to qualified full-time PhD students. Awards are made annually on a competitive basis.

Additional Information
For more information on how to apply, visit Drexel's Admissions page for Chemical Engineering (http://www.drexel.edu/grad/programs/coe/chemical-engineering/).

Degree Requirements
Superior students with MS or BS degrees will be considered for the doctoral program in Chemical Engineering. Students joining with a master's degree may satisfy up to 45.0 credit hours of the PhD course/research credit requirements depending on the courses taken and/or research carried out in their master's programs, subject to approval by the graduate program advisor.

The following general requirements must be satisfied in order to complete the PhD in Chemical Engineering:

- • 90.0 credit hours total
- • 15.0 core credits
- • 12.0 credit hours of specialized plan of study
- • 63.0 credit hours of research (including a 3.0 credit research practice course)
- • Qualifying exam (2nd term)
- • Establishing a plan of study (2nd term)
- • Candidacy exam (5th term)
- • Dissertation/thesis
- • Defense of dissertation/thesis
- • GPA requirements: 3.0 overall; 3.0 graduate chemical engineering (CHE) courses; 3.0 core graduate chemical engineering (CHE) courses

Qualifying Exam
The qualifying exam is administered once a year in January at the start of the second term. The objective of the exam is to evaluate proficiency in core undergraduate chemical engineering material. The format is made up of four problems, each covering a core chemical engineering subject at the undergraduate level, including thermodynamics, fluid mechanics, heat/mass transfer, and kinetics and reactor design. Students must demonstrate mastery in all four subjects to pass the qualifying exam. A student can appeal to take a second-chance exam at the end of the second term if the qualifying exam was not satisfactory in the first instance; however, the appeal is not guaranteed and will depend on student's overall performance in coursework, research, and teaching assistant duties.

Program Requirements

<table>
<thead>
<tr>
<th>Core Requirements</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE 502</td>
<td></td>
</tr>
<tr>
<td>Mathematical Methods in Chemical Engineering</td>
<td>3.0</td>
</tr>
<tr>
<td>CHE 513</td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering Thermodynamics I</td>
<td>3.0</td>
</tr>
<tr>
<td>CHE 525</td>
<td></td>
</tr>
<tr>
<td>Transport Phenomena I</td>
<td>3.0</td>
</tr>
<tr>
<td>CHE 543</td>
<td></td>
</tr>
<tr>
<td>Kinetics & Catalysis I</td>
<td>3.0</td>
</tr>
<tr>
<td>CHE 590</td>
<td></td>
</tr>
<tr>
<td>Research Methods and Practices</td>
<td>3.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Specialized Plan of Study Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0 credit hours of courses approved by research advisor. All students are expected to develop competence in their area(s) of specialization.</td>
<td>12.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Research</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>63.0 credit hours of research, which may include up to 6.0 credit hours of electives.</td>
<td>63.0</td>
</tr>
<tr>
<td>CHE 998</td>
<td>Ph.D. Dissertation</td>
</tr>
</tbody>
</table>

Total Credits 90.0

Candidacy Exam
The components of the candidacy exam are as follows:
• Proposal Document (written): The student is required to write a research proposal of about 15 pages including background, preliminary results, and a research plan (with their advisor's input). The proposal must be submitted to each member of the student’s thesis committee and to the graduate program advisor on the first day of the student's fifth term.

• Proposal Defense (oral): The student provides a formal defense of their proposal to their thesis committee before the end of the student's fifth term.

Preliminary Exam
A preliminary exam is targeted at least six months prior to the thesis defense with this scheduling subject to the research advisor's discretion. This preliminary exam is to ensure that the student has made adequate progress in their project. The components of the preliminary exam include:

• Exam Documents (written): The student is required to write an abstract of the preliminary defense talk, a one-page document describing the plan for completing the thesis, a tentative list of the thesis chapter titles, and a current list of publications/presentations. These must be submitted to each member of the student's thesis committee and to the graduate program advisor in advance of the oral exam date.

• Preliminary Defense (oral): The student provides a formal defense of the work to date and the anticipated work to be completed for the thesis to their thesis committee.

• Publications: At a minimum, at least one manuscript (original article) must have been submitted to a refereed journal prior to the oral exam date.

Thesis/Dissertation and Defense
As the culmination of intensive study and independent research, the doctoral dissertation represents a major scholarly endeavor; accordingly, it is recognized as the most important requirement of the degree. All doctoral candidates must present an acceptable dissertation based on significant work. The dissertation must represent a unique contribution to chemical engineering or biochemical engineering knowledge. A final oral examination is conducted, in part, as a defense of the dissertation. The requirements of the thesis/dissertation and defense are:

• Thesis (written): The student is required to write a thesis detailing the entire PhD project, including background, methods, results, discussion, conclusions, and bibliography.

• Defense (oral): The student provides a formal defense of their PhD thesis in an oral examination to their thesis committee.

• Publications: At a minimum, at least one original article must be published in a refereed journal (department's minimum requirement). At the discretion of the research advisor, further publication requirements may be imposed above this minimum.

Additional Information
For more information, visit the Chemical and Biological Engineering Department (https://drexel.edu/engineering/academics/departments/chemical-biological-engineering/) webpage.

Facilities

Abrams Laboratory (Abrams)

Software:
• The Abrams group Github repository (https://github.com/cameronabrams (https://github.com/cameronabrams/))

Computational resources:
• Proteus, Drexel’s high-performance cluster
• NSF XSEDE (www.xsede.org (http://www.xsede.org))
• DoD HPCMP (www.hpc.mil (https://www.hpc.mil))

Alvarez Research Group (Alvarez)

• Rheo Filament- VADER1000 - Filament Extensional Rheometer with forced convection oven
• TA DHR3 – Controlled Stress Rheometer with Electronic Heated Plates
• TA ARES G2 – Controlled Strain Rheometer with Forced Convection Oven
• Controlled Film Coater
• Gel Spinning Apparatus for continuous filament and fiber formation
• Microtensiometer for measurement of dynamic transport of surfactant to fluid-fluid interfaces, including dilatational rheology of equilibrated surfaces.
• Supercritical Microtensiometer for measurement of surfactant transport to fluid-fluid interfaces at elevated pressures
• Nikon TE microscope with 3MP camera and various objectives.
• Fluigent - 4 port continuous pressure fluid pump

Nanomaterials for Energy Applications and Technology Laboratory (Baxter)

• Amplified Ti:Sapphire laser with time-resolved teraherterz spectroscopy and femtosecond UV/vis/NIR transient absorption spectroscopy (Bossone 106)
• Solar simulator with monochromator and photovoltaic/photoelectrochemical test station
• Electrochemical impedance spectroscopy
• Layer-by-layer deposition robot
• Dip coater
• Spin coater
• Electrodeposition station
• Continuous flow microreactors

Biofuels Laboratory (Cairncross)
• Bubble column biodiesel reactors
• Recirculating heated oil baths
• Quartz crystal microbalance / heat conduction calorimeter (Masscal G1)
• Maxtek quartz crystal microbalance with phase lock oscillator
• Parr reactor

Nanocrystal Solar Laboratory (Fafarman)
• Two chamber fabrication glove box with separate air-purification for wet-chemical synthesis and dry-process fabrication steps, featuring HEPA filtered laminar flow air handling for class-1 cleanroom conditions in an inert atmosphere. In the wet-chemical fabrication chamber there are a spincoater, centrifuge, hot-plates and solid and liquid reagents. On the dry chamber side, there is an integrated thermal evaporator for depositing metal, and a UV-ozone cleaner.
• Custom built Schlenk vacuum/gas manifold, all necessary glassware, J-Kem precision temperature controllers and heating mantles
• Perkin Elmer Lambda 35 UV-vis spectrometer
• ThermoFisher Nicolet iS50R Fourier-transform vis-NIR-MIR absorption spectrometer covering spectral ranges 13000 – 600 and 25000 – 8000 1/cm
• Keithley dual-channel precision source-meter
• Crystalaser Q-switch laser, 300 mW at 532 nm
• Home-built 4-point probe station for thin film electrical conductivity
• 80 MHz digital oscilloscope
• Stanford Research Systems lock-in amplifier

Nanofibers for Energy Storage and Conversion Laboratory (Kalra)
• Four Electrospinning Stations (with core-shell spinning capability)
• Mbraun Dual User Glove Box
• Carver Heat Press
• Four Gamry Potentiostats (Ref 3000 and Interface 1000)
• 32-channel Maccor Battery Cycler, three 8-channel NEWARE Battery Cyclers
• Rotating Disc Electrode Test Station (Pine Instruments)
• Tube Furnaces/Convection Ovens/Vacuum Ovens/Ultrasonicator/Hot Plates/Precision Balances
• Environmental Chamber (Tenney) with high temperature/humidity control ranging from 25-200C and 5-95%RH and integrated with vapor permeation and EIS
• Thermo Fisher Nicolet IS50 FTIR Spectrometer equipped with in-operando battery/supercapacitor cells

Thin Films and Devices Laboratory (Lau)
• Chemical Vapor Deposition Thin Film Reactor System I
• Chemical Vapor Deposition Thin Film Reactor System II
• Chemical Vapor Deposition Rotating Bed Reactor System
• Denton Desktop High Vacuum Sputtering System
• Harrick RF Plasma Reactor
• Gamry Reference 600 Electrochemical Testing Station
• Gamry Interface 1000 Electrochemical Impedance Spectrometer
• Agilent Electrochemical Impedance Analyzer 4294A
• Solar Illuminator
• Nicolet 6700 FTIR Spectrometer
• Shimadzu UV-1800 UV-VIS Spectrophotometer
• Laurell Technologies Spin Coater
• Ramé-Hart 290 Goniometer
• Meiji MT5310L Microscope
• Vacuum Ovens/Hot Plates

Polymers and Composites Laboratory (Palmese)

• TA Instruments TGA Q50 Thermogravimetric Analyzer
• KSV Instruments CAM 200 Contact Angle and Surface Tension Meter
• TA Instruments DSC Q2000 Differential Scanning Calorimeter
• Instron 8872
• Thermo Nicolet Nexus 870 FTIR
• TA Instruments DMA Dynamic Mechanical Analysis
• Perkin Elmer DSC7 Differential Scanning Calorimeter
• Waters GPC/HPLC (RI, UV Detectors)
• Electropinning station
• TA Instruments AR Rheometer
• Thinky planetary centrifugal mixer ARE-250
• Melt Press
• Portable Near Infrared Spectrometer
• Brookfield digital viscometer
• Glove Box
• Supercritical Dryer (2x)
• Dielectric Barrier Discharge (DBD) plasma reactor

Process Systems Engineering Laboratory (Soroush)

• Shimadzu GPC
• Mini-Reactors
• Agilent GC/MS
• Fluidized Sand Bath
• IKA-RCT Stirred Hotplate Reactors
• Olympus Microscope
• Shimadzu UV-Vis Spectrophotometer (UV-1700)

Electrochemical Interfaces and Catalysis Laboratory (Snyder)

• Millipore DI water system
• 302N Autolab Potentiostats (x2)
• Mettler Toledo Micro-Balance
• Ultracentrifuge
• 4 port Schlenk line
• 4 kW Ambrell Radio Frequency Induction Furnace

Tang Laboratory (Tang)

• Six-channel Bio-Logic SP-300 potentiostat with electrochemical impedance spectroscopy
• LC Technology dual-user glovebox with argon atmosphere. Includes oxygen and water analyzers, electronic feedthroughs, and integrated vacuum oven
• Coin cell crimper /decrimper for battery fabrication (TOB Battery)
• Automatic electrode film coater (TOB Battery)
• Tube furnace
• Vacuum oven
• Karl-Fischer titration apparatus (Mettler Toledo)
• Two rotating disk electrode test station (Pine Instruments) with rotating ring-disk accessories
• 32-channel battery cycler (Arbin)
Wrenn Laboratory (Wrenn)

- PTI, Inc. C-71 Time-Resolved Fluorescence Spectrometer (pulsed nitrogen and dye lasers)
- PTI, Inc. A-710 Steady State Fluorescence Spectrometer
- Brookhaven 90Plus Dynamic Light Scattering Apparatus
- Brookhaven Goniometer-based, Static Light Scattering Apparatus
- Perkin-Elmer BUV40XW0 UV-Visible Absorbance Spectrometer
- Zeiss Axioskop2 Fluorescence microscope
- Zeiss Ultraviolet Digital Image Analysis System (contains Orca Camera, Sony 17” monitor, and Axiovision II software)
- Beckman Coulter Allegra64 Centrifuge
- Misonix, Inc. XL2020 Sonicator

Chemical Engineering Faculty

Cameron F. Abrams, PhD (University of California, Berkeley). Professor. Molecular simulations in biophysics and materials; receptors for insulin and growth factors; and HIV-1 envelope structure and function.

Nicolas Alvarez, PhD (Carnegie Mellon University). Assistant Professor. Phototonic crystal defect chromatography; extensional rheology of polymer/polymer composites; surfactant/polymer transport to fluid and solid interfaces; aqueous lubrication; interfacial instabilities.

Jason Baxter, PhD (University of California, Santa Barbara). Professor. Solar cells, semiconductor nanomaterials, ultrafast spectroscopy.

Richard A. Cairncross, PhD (University of Minnesota). Associate Professor. Effects of microstructure on transport and properties of polymers; moisture transport and degradation on biodegradation on biodegradable polymers; production of biofuel.

Aaron Fafarman, PhD (Stanford University). Associate Professor. Photovoltaic energy conversion; solution-based synthesis of semiconductor thin films; colloidal nanocrystals; electromodulation and photomodulation spectroscopy.

Vibha Kalra, PhD (Cornell University). Associate Professor. Electrodes for energy storage and conversion; supercapacitors; Li-S batteries; fuel cells; flow batteries; electrospinning for nanofibers; molecular dynamics simulations; Nanotechnology, polymer nanocomposites.

Kenneth K.S. Lau, PhD (Massachusetts Institute of Technology) Associate Department Head. Professor. Surface science; nanotechnology; polymer thin films and coatings; chemical vapor deposition.

Raj Mutharasan, PhD (Drexel University) Frank A. Fletcher Professor. Biochemical engineering; cellular metabolism in bioreactors; biosensors.

Giuseppe R. Palmese, PhD (University of Delaware). George B Francis Professor. Reacting polymer systems; nanostructured polymers; radiation processing of materials; composites and interfaces.

Joshua Snyder, PhD (Johns Hopkins University). Assistant Professor. Electrocatalysis (energy conversion/storage); heterogeneous catalysis corrosion (dealloying nanoporous metals); interfacial electrochemical phenomena in nanostructured materials; colloidal synthesis.

Masoud Soroush, PhD (University of Michigan). Professor. Process systems engineering; polymer engineering.

John H. Speidel, BSHE, MCHE (University of Delaware; Illinois Institute of Technology). Teaching Professor. Chemical process safety; process design engineering.

Maureen Tang, PhD (University of California, Berkeley). Assistant Professor. Batteries and fuel cells; nonaqueous electrochemistry; charge transport at interfaces.

Michael Walters, PhD (Drexel University). Assistant Teaching Professor. Undergraduate laboratory.

Stephen P. Wrenn, PhD (University of Delaware). Professor. Biomedical engineering; biological colloids; membrane phase behavior and cholesterol transport.

Emeritus Faculty

Civil Engineering

Major: Civil Engineering
Degree Awarded: Master of Science in Civil Engineering (MSCE)
Calendar Type: Quarter
Total Credit Hours: 45.0
Co-op Option: MSCE: Available for full-time, on-campus master's-level students
Classification of Instructional Programs (CIP) code: 14.0801
Standard Occupational Classification (SOC) code: 17-2015

About the Program

Objectives
The graduate program in civil engineering offers students the opportunity to develop a more fundamental and complete understanding of the principles that govern their field as well as current design methodology. Students are encouraged to be innovative and imaginative in their quest for recognizing, stating, analyzing, and solving engineering problems.

The goal of the Master’s program is to develop technical depth of expertise for a professional career in the planning, design, construction, and operation of large-scale infrastructure systems, built facilities, and water resources management.

General Information
The civil engineering programs comprise the following areas of specialization: building systems, geotechnical engineering, hydraulic and coastal engineering, structural engineering, and water resources.

Additional Information
For more information, visit the Department of Civil, Architectural and Environmental Engineering webpage.

Admission Requirements
MS admission is based on an academic record demonstrating adequate preparation and potential for successful graduate study. This typically includes a BS from an engineering curriculum accredited by the Accrediting Board for Engineering and Technology (ABET) or the equivalent from a non-U.S. institution. Submission of results from the Graduate Record Exam (GRE) is optional. A grade point average (GPA) of 3.0 is usually required. Graduates who do not have a bachelor's degree in either Civil, Architectural or Environmental Engineering may be required to take preparatory undergraduate courses.

For additional information on how to apply, visit Drexel's Admissions page for Civil Engineering (http://www.drexel.edu/grad/programs/coe/civil-engineering/).

Master of Science in Civil Engineering
The programs of study at the master's level continue the specialization developed at the senior level of the undergraduate program or newly developed interests. The Master of Science in Civil Engineering program may be elected by graduates of ABET-accredited undergraduate programs in civil engineering and related fields. Admission and prerequisites are determined on the basis of a student's undergraduate transcript.

Most MSCE graduates work as professional engineers in consulting firms, industry, or governmental agencies. A number of our graduates have started consulting and construction firms in the Philadelphia area and have been very successful. Other former students hold prominent positions in public utilities, local government agencies, and industry.

The full-time graduate academic program is closely associated with the research efforts of the faculty. Full-time master's degree candidates are encouraged to base their master's thesis on some aspect of faculty research. The one-to-one relationship between student and faculty member provides an invaluable learning experience. The General (Aptitude) Test of the Graduate Record Examination (GRE) is required for applicants pursuing full-time study.

The master's degree requires a total of 45.0 credits, of which 24.0 credits must be in the major field of interest and 6.0 credits are to fulfill math requirements. The remaining credits are taken as electives in related areas. The choice of core and elective courses is made in consultation with the student's graduate advisor.

Areas of concentration include:
- Geotechnical/Geosynthetics Engineering
- Structural Engineering
- Water Resources Engineering

Co-op
Students have the option to pursue a co-op as part of their master's program. In conjunction with the Steinbright Career Development Center, students will be provided an overview of professionalism, resume writing, and the job search process. Co-op will be for a six-month position running in the summer/fall terms. Students will not earn academic credit for the co-op but will earn 9.0 non-academic co-op units per term.
Geotechnical/Geosynthetics Engineering Requirements

Required Cross-Cutting Courses (12 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVE 550</td>
<td>Natural Hazards and Infrastructure</td>
<td>3.0</td>
</tr>
<tr>
<td>CIVE 605</td>
<td>Advanced Mechanics of Materials</td>
<td>3.0</td>
</tr>
<tr>
<td>CIVE 839</td>
<td>Geomechanics Modeling</td>
<td>3.0</td>
</tr>
<tr>
<td>or ENVE 750</td>
<td>Data-based Engineering Modeling</td>
<td></td>
</tr>
<tr>
<td>ENVE 727</td>
<td>Risk Assessment</td>
<td>3.0</td>
</tr>
<tr>
<td>or ENVE 555</td>
<td>Geographic Information Systems</td>
<td></td>
</tr>
</tbody>
</table>

Required Theme Courses (21 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVE 531</td>
<td>Advanced Foundation Engineering</td>
<td>3.0</td>
</tr>
<tr>
<td>CIVE 551</td>
<td>Geotechnical Site Investigation</td>
<td>3.0</td>
</tr>
<tr>
<td>CIVE 632</td>
<td>Advanced Soil Mechanics</td>
<td>3.0</td>
</tr>
<tr>
<td>CIVE 635</td>
<td>Slope Stability and Landslides</td>
<td>3.0</td>
</tr>
<tr>
<td>CIVE 637</td>
<td>Seepage and Consolidation</td>
<td>3.0</td>
</tr>
<tr>
<td>CIVE 730</td>
<td>Experimental Soil Mechanics I</td>
<td>3.0</td>
</tr>
<tr>
<td>or CIVE 731</td>
<td>Experimental Soil Mechanics II</td>
<td></td>
</tr>
<tr>
<td>or CIVE 732</td>
<td>Experimental Soil Mechanics III</td>
<td></td>
</tr>
<tr>
<td>CIVE 833</td>
<td>Earth Retaining Structures</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Technical Elective Courses (12 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVE 530</td>
<td>Geotechnical Engineering for Highways</td>
<td></td>
</tr>
<tr>
<td>CIVE 531</td>
<td>Advanced Foundation Engineering</td>
<td></td>
</tr>
<tr>
<td>CIVE 550</td>
<td>Natural Hazards and Infrastructure</td>
<td></td>
</tr>
<tr>
<td>CIVE 551</td>
<td>Geotechnical Site Investigation</td>
<td></td>
</tr>
<tr>
<td>CIVE 562</td>
<td>Introduction to Groundwater Hydrology</td>
<td></td>
</tr>
<tr>
<td>CIVE 615</td>
<td>Infrastructure Condition Evaluation</td>
<td></td>
</tr>
<tr>
<td>CIVE 635</td>
<td>Slope Stability and Landslides</td>
<td></td>
</tr>
<tr>
<td>CIVE 636</td>
<td>Ground Modification</td>
<td></td>
</tr>
<tr>
<td>CIVE 637</td>
<td>Seepage and Consolidation</td>
<td></td>
</tr>
<tr>
<td>CIVE 640</td>
<td>Environmental Geotechnics</td>
<td></td>
</tr>
<tr>
<td>CIVE 650</td>
<td>Geosynthetics in Civil Infrastructure</td>
<td></td>
</tr>
<tr>
<td>CIVE 651</td>
<td>Geosynthetics in Waste Containment</td>
<td></td>
</tr>
<tr>
<td>CIVE 730</td>
<td>Experimental Soil Mechanics I</td>
<td></td>
</tr>
<tr>
<td>CIVE 731</td>
<td>Experimental Soil Mechanics II</td>
<td></td>
</tr>
<tr>
<td>CIVE 732</td>
<td>Experimental Soil Mechanics III</td>
<td></td>
</tr>
<tr>
<td>CIVE 737</td>
<td>Seismic Geotechnics</td>
<td></td>
</tr>
<tr>
<td>CIVE 833</td>
<td>Earth Retaining Structures</td>
<td></td>
</tr>
<tr>
<td>CIVE 838</td>
<td>Soil Behavior</td>
<td></td>
</tr>
<tr>
<td>CIVE 839</td>
<td>Geomechanics Modeling</td>
<td></td>
</tr>
<tr>
<td>ENVE 555</td>
<td>Geographic Information Systems</td>
<td></td>
</tr>
<tr>
<td>ENVE 727</td>
<td>Risk Assessment</td>
<td></td>
</tr>
<tr>
<td>ENVE 750</td>
<td>Data-based Engineering Modeling</td>
<td></td>
</tr>
<tr>
<td>MATH 520</td>
<td>Numerical Analysis I</td>
<td></td>
</tr>
<tr>
<td>MATH 521</td>
<td>Numerical Analysis II</td>
<td></td>
</tr>
<tr>
<td>MEM 591</td>
<td>Applied Engr Anal Methods I</td>
<td></td>
</tr>
<tr>
<td>MEM 592</td>
<td>Applied Engr Anal Methods II</td>
<td></td>
</tr>
<tr>
<td>MEM 660</td>
<td>Theory of Elasticity I</td>
<td></td>
</tr>
<tr>
<td>MEM 663</td>
<td>Continuum Mechanics</td>
<td></td>
</tr>
<tr>
<td>MEM 664</td>
<td>Introduction to Plasticity</td>
<td></td>
</tr>
<tr>
<td>MEM 681</td>
<td>Finite Element Methods I</td>
<td></td>
</tr>
<tr>
<td>MEM 682</td>
<td>Finite Element Methods II</td>
<td></td>
</tr>
</tbody>
</table>

Thesis or Electives (9 credits)

For students writing an M.S. thesis, these nine credits should consist of six research credits (CIVE 997) and three thesis credits (CIVE 898). Full time Masters students are encouraged to do a thesis. Students opting not to do a thesis will be required to complete an additional 9.0 elective credits from the list above, therefore, the total elective credits required will be 12.0.

* Must achieve grade of B or better.

** For students writing an M.S. thesis, these nine credits should consist of six research credits (CIVE 997) and three thesis credits (CIVE 898). Full time Masters students are encouraged to do a thesis. Students opting not to do a thesis will be required to complete an additional 9.0 elective credits from the list above, therefore, the total elective credits required will be 12.0.
Structural Engineering Requirements

Required Cross-Cutting Courses (12 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVE 665</td>
<td>Advanced Mechanics of Materials *</td>
<td>3.0</td>
</tr>
<tr>
<td>ENVE 555</td>
<td>Geographic Information Systems</td>
<td>3.0</td>
</tr>
<tr>
<td>or CIVE 615</td>
<td>Infrastructure Condition Evaluation</td>
<td></td>
</tr>
<tr>
<td>ENVE 571</td>
<td>Environmental Life Cycle Assessment</td>
<td>3.0</td>
</tr>
<tr>
<td>ENVE 750</td>
<td>Data-based Engineering Modeling</td>
<td>3.0</td>
</tr>
<tr>
<td>or ENVE 727</td>
<td>Risk Assessment</td>
<td></td>
</tr>
</tbody>
</table>

Required Theme Courses (12 credits)*

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVE 701</td>
<td>Advanced Structural Analysis I</td>
<td>3.0</td>
</tr>
<tr>
<td>CIVE 702</td>
<td>Advanced Structural Analysis II</td>
<td>3.0</td>
</tr>
<tr>
<td>CIVE 703</td>
<td>Advanced Structural Analysis III</td>
<td>3.0</td>
</tr>
<tr>
<td>CIVE 708</td>
<td>Fundamentals of Structural Dynamics</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Technical Elective Courses (21 credits) 21.0

These courses must be approved by the student's advisor and the graduate advisor. Select from any of the following that were not already counted for credit.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE 510</td>
<td>Intelligent Buildings</td>
</tr>
<tr>
<td>CIVE 510</td>
<td>Prestressed Concrete</td>
</tr>
<tr>
<td>CIVE 512</td>
<td>Wood and Timber Design</td>
</tr>
<tr>
<td>CIVE 520</td>
<td>Advanced Concrete Technology</td>
</tr>
<tr>
<td>CIVE 531</td>
<td>Advanced Foundation Engineering</td>
</tr>
<tr>
<td>CIVE 540</td>
<td>Forensic Structural Engineering</td>
</tr>
<tr>
<td>CIVE 615</td>
<td>Infrastructure Condition Evaluation</td>
</tr>
<tr>
<td>CIVE 704</td>
<td>Behavior and Stability of Structural Members I</td>
</tr>
<tr>
<td>CIVE 705</td>
<td>Behavior and Stability of Structural Members II</td>
</tr>
<tr>
<td>CIVE 711</td>
<td>Engineered Masonry I</td>
</tr>
<tr>
<td>CIVE 714</td>
<td>Behavior of Concrete Structures I</td>
</tr>
<tr>
<td>ENVE 555</td>
<td>Geographic Information Systems</td>
</tr>
<tr>
<td>ENVE 727</td>
<td>Risk Assessment</td>
</tr>
<tr>
<td>ENVE 750</td>
<td>Data-based Engineering Modeling</td>
</tr>
<tr>
<td>MATH 520</td>
<td>Numerical Analysis I</td>
</tr>
<tr>
<td>MATH 521</td>
<td>Numerical Analysis II</td>
</tr>
<tr>
<td>MEM 591</td>
<td>Applied Engr Analy Methods I</td>
</tr>
<tr>
<td>MEM 592</td>
<td>Applied Engr Analy Methods II</td>
</tr>
<tr>
<td>MEM 660</td>
<td>Theory of Elasticity I</td>
</tr>
<tr>
<td>MEM 663</td>
<td>Continuum Mechanics</td>
</tr>
<tr>
<td>MEM 664</td>
<td>Introduction to Plasticity</td>
</tr>
<tr>
<td>MEM 681</td>
<td>Finite Element Methods I</td>
</tr>
<tr>
<td>MEM 682</td>
<td>Finite Element Methods II</td>
</tr>
</tbody>
</table>

Thesis or Electives **

Total Credits 45.0

* Must achieve grade of B or better.

** For students writing an M.S. thesis, these nine credits should consist of six research credits (CIVE 997) and three thesis credits (CIVE 898). Full time Masters students are encouraged to do a thesis. Students opting not to do a thesis will be required to complete an additional 9.0 elective credits from the list above, therefore, the total elective credits required will be 21.0.

Water Resources Engineering Requirements

Required Cross-Cutting Courses (12 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVE 664</td>
<td>Open Channel Hydraulics *</td>
<td>3.0</td>
</tr>
<tr>
<td>ENVE 555</td>
<td>Geographic Information Systems</td>
<td>3.0</td>
</tr>
<tr>
<td>or CIVE 615</td>
<td>Infrastructure Condition Evaluation</td>
<td></td>
</tr>
<tr>
<td>ENVE 571</td>
<td>Environmental Life Cycle Assessment</td>
<td>3.0</td>
</tr>
<tr>
<td>ENVE 750</td>
<td>Data-based Engineering Modeling</td>
<td>3.0</td>
</tr>
<tr>
<td>or ENVE 727</td>
<td>Risk Assessment</td>
<td></td>
</tr>
</tbody>
</table>

Required Theme Courses (12 credits)*

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVE 565</td>
<td>Urban Ecohydraulics</td>
<td>3.0</td>
</tr>
<tr>
<td>ENVE 665</td>
<td>Hazardous Waste & Groundwater Treatment</td>
<td>3.0</td>
</tr>
<tr>
<td>or CIVE 564</td>
<td>Sustainable Water Resource Engineering</td>
<td></td>
</tr>
</tbody>
</table>
Civil Engineering

ENVE 681 Analytical and Numerical Techniques in Hydrology 3.0
or CIVE 567 Watershed Analysis
ENVS 501 Chemistry of the Environment 3.0

Technical Elective Courses (21 credits) 21.0
These courses must be approved by the student's advisor and the graduate advisor.
Select from any of the following that were not already counted for credit.

CIVE 562 Introduction to Groundwater Hydrology
CIVE 564 Sustainable Water Resource Engineering
CIVE 567 Watershed Analysis
CIVE 615 Infrastructure Condition Evaluation
ENVE 555 Geographic Information Systems
ENVE 660 Chemical Kinetics in Environmental Engineering
ENVE 661 Env Engr Op-Chem & Phys
ENVE 665 Hazardous Waste & Groundwater Treatment
ENVE 727 Risk Assessment
ENVE 750 Data-based Engineering Modeling

Thesis or Electives (9 credits) **

Total Credits 45.0

* Must achieve grade of B or better.
** For students writing an M.S. thesis, these nine credits should consist of six research credits (CIVE 997) and three thesis credits (CIVE 898). Full time Masters students are encouraged to do a thesis. Students opting not to do a thesis will be required to complete an additional 9.0 elective credits from the list above, therefore, the total elective credits required will be 21.0.

Sample Plan of Study (MS)
Civil Engineering

Sample Plan of Study (MSCE)

First Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credits Winter</th>
<th>Credits Spring</th>
<th>Credits Summer</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross-Cutting Course</td>
<td>3.0 Cross-Cutting Course</td>
<td>3.0 Cross-Cutting Course</td>
<td>3.0 VACATION or COOP EXPERIENCE</td>
<td></td>
</tr>
<tr>
<td>Technical Elective</td>
<td>3.0 Technical Elective</td>
<td>3.0 Technical Elective</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>Theme Course</td>
<td>3.0 Theme Course</td>
<td>3.0 Theme Course</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credits Winter</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross-Cutting Course or Theme Course</td>
<td>3.0 Cross-Cutting Course or Theme Course</td>
<td>3.0</td>
</tr>
<tr>
<td>Technical Electives or Research Credits</td>
<td>6.0 Technical Elective</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>Technical Elective or Thesis Credit</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

Total Credits 45

Dual/Accelerated Degree Programs
Civil Engineering students may find it useful to pursue dual MS degrees. Such programs have been pursued in concert with Environmental Engineering/Science, Mechanical Engineering, Information Studies and Engineering Management. A dual degree student must complete the required coursework for each degree. Depending upon the concentration, up to 15.0 credits from another program may count as electives for the MSCE with the advisor's approval. The student is responsible for obtaining approval of MSCE courses that apply to the second degree.

Bachelor's/Master's Accelerated Degree Program
Exceptional undergraduate students can also pursue a Master of Science degree in the same period as the Bachelor of Science. Many students deepen their knowledge with a master's degree in Civil Engineering, while others have broadened their knowledge with a master's degree in related areas such as Environmental Science, Engineering Management, Software Engineering and Information Technology.

For more information about this program, visit the Department's BS/MS Accelerated Degree Program webpage.
Facilities

Construction Materials Laboratory
This laboratory contains facilities for the study of concrete, asphalt, mortar, soil-cement, and timber materials, and moist cure facilities.

Geosynthetics Laboratory
This laboratory contains a complete suite of physical, mechanical, hydraulic, endurance, and environmental test devices for assessing behavior of geotextiles, geogrids, geonets, geomembranes, and geocomposites.

HVAC and Refrigeration Laboratory
This laboratory contains complete models of heating, ventilation, air conditioning, refrigeration, and pumping system models.

Hydromechanics Laboratory
This laboratory contains a wave channel tilting flume, pipe friction equipment, bench demonstration equipment, and a beach erosion model.

Soil Mechanics and Geoenvironmental Laboratory
This laboratory contains triaxial and direct shear equipment, controlled environmental chambers, consolidation tests, flexwall permeameters, and a test bed.

Structural Testing Laboratory
This laboratory contains universal testing machines with 150,000- and 300,000-pound capacity and test beds with MTS dynamic load equipment.

Civil, Architectural and Environmental Engineering Faculty

Abieyuwa Aghayere, PhD (University of Alberta). Professor. Structural design - concrete, steel and wood; structural failure analysis; retrofitting of existing structures; new structural systems and materials; engineering education.

Ivan Bartoli, PhD (University of California, San Diego). Associate Professor. Non-destructive evaluation and structural health monitoring; dynamic identification, stress wave propagation modeling.

Shannon Capps, PhD (Georgia Institute of Technology). Associate Professor. Atmospheric chemistry; data assimilation; advanced sensitivity analysis; inverse modeling.

S.C. Jonathan Cheng, PhD (West Virginia University). Associate Professor. Soil mechanics; geosynthetics; geotechnical engineering; probabilistic design; landfill containments; engineering education.

Yaghoob (Amir) Farnam, PhD (Purdue University). Associate Professor. Advanced and sustainable infrastructure materials; multifunctional, self-responsive and bioinspired construction materials; advanced multiscale manufacturing; characterization, and evaluation of construction materials; durability of cement-based materials.

Patricia Gallagher, PhD (Virginia Polytechnic Institute and State University). Professor. Geotechnical and geoenvironmental engineering; soil improvement; soil improvement; recycled materials in geotechnics.

Patrick Gurian, PhD (Carnegie-Mellon University). Professor. Risk analysis of environmental and infrastructure systems; novel adsorbent materials; environmental standard setting; Bayesian statistical modeling; community outreach and environmental health.

Charles N. Haas, PhD (University of Illinois, Urbana-Champaign) Program Head for Environmental Engineering; L. D. Betz Professor of Environmental Engineering. Water treatment; risk assessment; bioterrorism; environmental modeling and statistics; microbiology; environmental health.

Simi Hoque, PhD (University of California - Berkeley) Program Head for Architectural Engineering. Professor. Computational methods to reduce building energy and environmental impacts, urban metabolism, thermal comfort, climate resilience.

Y. Grace Hsuan, PhD (Imperial College). Professor. Durability of polymeric construction materials; advanced construction materials; and performance of geosynthetics.

Joseph B. Hughes, PhD (University of Iowa). Distinguished University Professor. Biological processes and applications of nanotechnology in environmental systems.

L. James Lo, PhD (University of Texas at Austin). Associate Professor. Architectural fluid mechanics; building automation and autonomy; implementation of natural and hybrid ventilation in buildings; airflow distribution in buildings; large-scale air movement in an urban built environment; building and urban informatics; data-enhanced sensing and control for optimal building operation and management; novel data gathering methods for building/urban problem solving; interdisciplinary research on occupant behaviors in the built environment.

Franco Montalto, PhD (Cornell University). Professor. Effects of built infrastructure on societal water needs, ecohydrologic patterns and processes, ecological restoration, green design, and water interventions.
Mira S. Olson, PhD (University of Virginia). Associate Professor. Peace engineering; source water quality protection and management; contaminant and bacterial fate and transport; community engagement.

Miguel A. Pando, PhD (Virginia Polytechnic Institute and State University). Associate Professor. Laboratory testing of geomaterials; geotechnical aspects of natural hazards; soil-structure-interaction; geotechnical engineering.

Matthew Reichenbach, PhD (University of Austin at Texas). Assistant Teaching Professor. Design and behavior of steel structures, bridge engineering, structural stability

Michael Ryan, PhD (Drexel University) Associate Department Head of Graduate Studies. Associate Teaching Professor. Microbial Source Tracking (MST); Quantitative Microbial Risk Assessment (QMRA); dynamic engineering systems modeling; molecular microbial biology; phylogenetics; metagenomics; bioinformatics; environmental statistics; engineering economics; microbiology; potable and wastewater quality; environmental management systems.

Christopher Sales, PhD (University of California, Berkeley). Associate Professor. Environmental microbiology and biotechnology; biodegradation of environmental contaminants; microbial processes for energy and resource recovery from waste; application of molecular biology, analytical chemistry and bioinformatic techniques to study environmental biological systems.

Robert Swan Teaching Professor. Geotechnical and geosynthetic engineering; soil/geosynthetic interaction and performance; laboratory and field geotechnical/geosynthetic testing.

Sharon Walker, PhD (Yale University) Dean, College of Engineering. Distinguished Professor. Water quality systems engineering

Michael Waring, PhD (University of Texas at Austin) Department Head, Civil, Architectural, and Environmental Engineering. Associate Professor. Indoor air quality and building sustainability; indoor particulate matter fate and transport; indoor chemistry and particle formation; secondary impacts of control technologies and strategies.

Jin Wen, PhD (University of Iowa). Professor. Architectural engineering; Building Energy Efficiency; Intelligent Building; Net-zero Building; and Indoor Air Quality.

Aspasia Zerva, PhD (University of Illinois, Urbana-Champaign). Professor. Earthquake engineering; mechanics; seismology; structural reliability; system identification; advanced computational methods in structural analysis.

Emeritus Faculty

A. Emin Aktan, PhD (University of Illinois, Urbana-Champaign). Professor Emeritus. Health monitoring and management of large infrastructures with emphasis on health monitoring.

Eugenia Ellis, PhD, AIA (Virginia Polytechnic Institute and State University). Professor Emerita. Natural and electrical light sources and effects on biological rhythms and health outcomes; ecological strategies for smart, sustainable buildings of the nexus of health, energy, and technology.

Ahmad Hamid, PhD (McMaster University). Professor Emeritus. Engineered masonry; seismic behavior, design and retrofit of masonry structures; development of new materials and building systems.

Harry G. Harris, PhD (Cornell University). Professor Emeritus. Structural models; dynamics of structures, plates and shells; industrialized building construction.

Joseph P. Martin, PhD (Colorado State University). Professor Emeritus. Geotechnical and geoenvironmental engineering; hydrology; transportation; waste management.

James E. Mitchell, MArch (University of Pennsylvania). Professor Emeritus. Architectural engineering design; building systems; engineering education.

Joseph V. Mullin, PhD (Pennsylvania State University). Teaching Professor Emeritus. Structural engineering; failure analysis; experimental stress analysis; construction materials; marine structures.

Civil Engineering PhD

Major: Civil Engineering
Degree Awarded: Doctor of Philosophy (PhD)
Calendar Type: Quarter
Minimum Required Credits: 90.0
Co-op Option: None
Classification of Instructional Programs (CIP) code: 14.0801
Standard Occupational Classification (SOC) code: 17-2015
About the Program

Objectives
The graduate program in civil engineering offers students the opportunity to develop a more fundamental and complete understanding of the principles that govern their field as well as current design methodology. Students are encouraged to be innovative and imaginative in their quest for recognizing, stating, analyzing, and solving engineering problems.

Civil Engineering is inherently an interdisciplinary enterprise that is centered on the design, construction, and operation of the build environment. Civil Engineering PhD graduates may include students with expertise in one or more of the following sub-disciplines (usually housed in civil/environmental engineering and elsewhere in traditional disciplinary constructs or newly developing fields or focus of expertise):

- Structural engineering
- Geotechnical/geosynthetics engineering
- Water resources engineering, and
- Sustainable engineering

Graduates are engineers and researchers trained in integrated building design and operation practices who can work on interdisciplinary teams that are able to develop creative solutions combined with technological advances to produce functional, efficient, attractive, and sustainable building infrastructure.

Additional Information
For more information, visit the Department of Civil, Architectural and Environmental Engineering (https://drexel.edu/engineering/academics/departments/civil-architectural-environmental-engineering/) webpage.

Admission Requirements
Applicants to the PhD in Civil Engineering must have a minimum of a Bachelor of Science degree. The application package will include:

- undergraduate and graduate transcripts
- three letters of recommendation from faculty or professionals who can evaluate the applicant’s promise as a graduate student
- GRE scores (optional)
- a written statement of career and educational goals.

Competitive applicants will possess an undergraduate GPA of 3.30 or higher and GRE scores above the 60th percentile.

For additional information on how to apply, visit Drexel’s Admissions page for Civil Engineering (http://www.drexel.edu/grad/programs/coe/civil-engineering/).

Degree Requirements
Requirements
The following general requirements must be satisfied to complete the PhD in Civil Engineering:

- Establishment of plan of study with PhD advisor
- Completion of 90.0 quarter credit hours (or 45 credit hours post-Masters), including taking certain qualifying courses
- Passing of PhD candidacy exam
- Approval of PhD dissertation proposal
- Defense of PhD dissertation

Students entering the PhD program with an approved Master of Science (MS) degree must take 45 credit hours of coursework and research to be approved by their PhD advisor. Students entering the PhD program without an approved MS degree can either complete the 45-credit hour Master of Science in Civil Engineering (MSCE) degree followed by an additional 45 credit hours post MSCI, or they can choose to not obtain the MSCE and complete only the required "core" courses for the PhD degree with the completion of a total of 90 required credit hours. Students with previous graduate coursework may transfer no more than 15 quarter credits (equivalent to 12 semester credit) from approved institutions if deemed equivalent to courses offered within the department.

All PhD students are required to meet all milestones of the program. The total credit amount, candidacy exam, and dissertation are university requirements. Additional requirements are determined by the department offering the degree.
Qualifying Courses
To satisfy the qualifying requirements, students must earn a grade of B+ or better in the six or seven required "core" courses (depending on the program of study) taken at Drexel and must earn an overall GPA of 3.5 or better in these courses.

Undergraduate courses, independent studies, research credits, and courses from other departments cannot be counted toward the qualifying requirements. Students progress toward these requirements will be assessed by the PhD advisor following the student's first year in the PhD program. For more information, visit the Civil Engineering's PhD Program Requirements page.

Candidacy Exam
After approximately one year of study beyond the MS degree or completion of the required "core" courses, if their GPA is greater than or equal to 3.5, PhD students can and must take a candidacy examination consisting of written and oral parts. Successful completion of the candidacy exam enables a student to progress from the designation of PhD student to PhD candidate. The candidacy exam represents the first exam in a series of three that comprise the PhD curriculum.

The Civil Engineering candidacy examination serves to define the student's research domain and to evaluate the student's knowledge and understanding of various fundamental and foundational results in that domain. The student is expected to be able to read, understand, analyze, and explain advanced technical results in a specialized area of Civil Engineering at an adequate level of detail. The candidacy examination will evaluate those abilities by asking a student to summarize literature and/or undertake a small research project. The student will prepare a written summary of review and/or project results, present the outcome orally, and answer questions about the report or presentation. The candidacy examination committee will evaluate the written report, the oral presentation, and the student's answers. The candidacy committee membership must follow the requirements of the Graduate College and must be approved by the Graduate College.

Students with a GPA < 3.5 do not meet eligibility requirements to sit for the candidacy exam. In this case, a student may petition a Graduate Advisor to take a Preliminary Written Exam (PWE). A committee will be formed consisting of three members selected from the pool of faculty in the field of research interest of the student and the pool of faculty who taught the courses taken by the student during the preceding terms. An exam will be developed consisting of a series of questions/problems prepared by the three written exam committee members. The written exam, while fixed in duration, may be composed of several different problem-solving assignments. Additionally, the exam may be closed book or open book or a combination thereof. The student will consult with the advisor to become acquainted with the specific rules of the exam. The exam will be graded by the PWE Committee to determine if the student may sit for the candidacy exam.

Dissertation Proposal
After successfully completing the candidacy examination, the PhD candidate must prepare a dissertation proposal that outlines, in detail, the specific problems that will be solved during the research that is conducted to complete the PhD dissertation. The quality of the dissertation proposal should be at the level of a peer-reviewed proposal to a federal funding agency, or a publishable scientific paper. The candidate is responsible for sending the dissertation proposal to the PhD committee no less than two weeks before the scheduled oral presentation. The PhD committee membership need not be the same as the candidacy exam committee, but it follows the same requirements and must be approved by the Graduate College. The oral presentation involves a presentation by the candidate followed by a period during which the committee will ask questions. The committee will then determine if the dissertation proposal has been accepted. The dissertation proposal can be repeated at most once if the proposal was not accepted.

A dissertation proposal must be approved within two years of becoming a PhD candidate. After approval of the dissertation proposal, the committee may meet to review the progress of the research.

Dissertation Defense
After successfully completing the dissertation proposal, the PhD candidate must conduct the necessary research and publish the results in a PhD dissertation. The dissertation must be submitted to the PhD committee no less than two weeks prior to the scheduled oral defense. The oral presentation by the candidate is open to the public, followed by an unspecified period during which the committee will ask questions. The question-and-answer period is not open to the public. The committee will then determine if the candidate has passed or failed the examination. If not passed, the candidate will be granted one more chance to pass the final defense.

The PhD degree is awarded for original research on a significant Civil Engineering problem. Graduate students will work closely with individual faculty members to pursue the PhD degree. PhD dissertation research is usually supported by a research grant from a government agency or an industrial contract. Many doctoral students take three to five years of full-time graduate study to complete their degrees.

Program Requirements

<table>
<thead>
<tr>
<th>Post Bachelor of Science Degree - Geotechnical/Geosynthetics Engineering Required Core Courses</th>
<th>21.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVE 531 Advanced Foundation Engineering</td>
<td></td>
</tr>
<tr>
<td>CVE 551 Geotechnical Site Investigation</td>
<td></td>
</tr>
<tr>
<td>CVE 632 Advanced Soil Mechanics</td>
<td></td>
</tr>
<tr>
<td>CVE 635 Slope Stability and Landslides</td>
<td></td>
</tr>
<tr>
<td>CVE 637 Seepage and Consolidation</td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
</tr>
<tr>
<td>CIVE 730</td>
<td>Experimental Soil Mechanics I</td>
</tr>
<tr>
<td>or CIVE 731</td>
<td>Experimental Soil Mechanics II</td>
</tr>
<tr>
<td>or CIVE 732</td>
<td>Experimental Soil Mechanics III</td>
</tr>
<tr>
<td>CIVE 833</td>
<td>Earth Retaining Structures</td>
</tr>
</tbody>
</table>

Technical Elective Requirements

0.0-30.0

To be determined by the PhD faculty advisor and approved by the graduate advisor

500+ level courses in AE, CIVE, ENVE, or other courses approved by the graduate advisor

Research Requirements

68.0-137.0

Please note that the number of research credits may be reduced based on the number of Technical Electives that are required.

CIVE 997 Research

Dissertation Requirements

1.0-12.0

CIVE 998 Ph.D. Dissertation

Total Credits

90.0-200.0

Post Bachelor of Science Degree - Structural Engineering

Required Core Courses

18.0

- CIVE 605 Advanced Mechanics of Materials
- CIVE 615 Infrastructure Condition Evaluation
- CIVE 701 Advanced Structural Analysis I
- CIVE 702 Advanced Structural Analysis II
- CIVE 703 Advanced Structural Analysis III
- CIVE 708 Fundamentals of Structural Dynamics

Technical Elective Requirements

0.0-30.0

To be determined by the PhD faculty advisor and approved by the graduate advisor

500+ level courses in AE, CIVE, ENVE, or other courses approved by the graduate advisor

Research Requirements

71.0-140.0

Please note that the number of research credits may be reduced based on the number of Technical Electives that are required.

CIVE 997 Research

Dissertation Requirements

1.0-12.0

CIVE 998 Ph.D. Dissertation

Total Credits

90.0-200.0

Post Bachelor of Science Degree - Water Resources Engineering

18.0

- CIVE 564 Sustainable Water Resource Engineering
- CIVE 565 Urban Ecohydraulics
- CIVE 567 Watershed Analysis
- ENVE 665 Hazardous Waste & Groundwater Treatment
- ENVE 681 Analytical and Numerical Techniques in Hydrology
- ENVS 501 Chemistry of the Environment

Technical Elective Requirements

0.0-30.0

To be determined by the PhD faculty advisor and approved by the graduate advisor

500+ level courses in AE, CIVE, ENVE, or other courses approved by the graduate advisor

Research Requirements

71.0-140.0

Please note that the number of research credits may be reduced based on the number of Technical Electives that are required.

CIVE 997 Research

Dissertation Credit Requirements

1.0-12.0

CIVE 998 Ph.D. Dissertation

Total Credits

90.0-200.0

Post Master of Science Degree

Technical Elective Requirements

0.0-30.0

To be determined by the PhD faculty advisor and approved by the graduate advisor

500+ level courses in AE, CIVE, ENVE, or other courses approved by the graduate advisor

Research Requirements

44.0-100.0

Please note that the number of research credits may be reduced based on the number of Technical Electives that are required.

CIVE 997 Research

Dissertation Requirements

1.0-12.0

CIVE 998 Ph.D. Dissertation

Total Credits

45.0-142.0
Sample Plan of Study

Upon entering the PhD program, each student will be assigned an academic advisor, and with the help of the advisor will develop and file a plan of study (which can be brought up to date when necessary). The plan of study should be filed with the graduate advisor and uploaded to the E-Forms system no later than the end of the first term. The Eforms (https://gradcollege.irt.drexel.edu/) system will be used to track program progression and milestones.

Sample Plans of Study are presented below:

Post Bachelor of Science Degree - Geotechnical/Geosynthetics Engineering

<table>
<thead>
<tr>
<th>First Year</th>
<th>Fall Credits</th>
<th>Winter Credits</th>
<th>Spring Credits</th>
<th>Summer Credits</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVE 531</td>
<td>3.0 CIVE 730, 731, or 732</td>
<td>3.0 CIVE 635</td>
<td>3.0 Vacation</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>CIVE 551</td>
<td>3.0 CIVE 833</td>
<td>3.0 CIVE 637</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIVE 632</td>
<td>3.0 Technical Electives</td>
<td>3.0 Technical Electives</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Fall Credits</th>
<th>Winter Credits</th>
<th>Spring Credits</th>
<th>Summer Credits</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVE 997</td>
<td>9.0 CIVE 997</td>
<td>9.0 CIVE 997</td>
<td>9.0 Vacation</td>
<td>0.0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th>Fall Credits</th>
<th>Winter Credits</th>
<th>Spring Credits</th>
<th>Summer Credits</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVE 997</td>
<td>9.0 CIVE 997</td>
<td>9.0 CIVE 997</td>
<td>9.0 Vacation</td>
<td>0.0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fourth Year</th>
<th>Fall Credits</th>
<th>Winter Credits</th>
<th>Spring Credits</th>
<th>Summer Credits</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVE 997</td>
<td>6.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIVE 998</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Credits 90

Post Bachelor of Science Degree - Structural Engineering

<table>
<thead>
<tr>
<th>First Year</th>
<th>Fall Credits</th>
<th>Winter Credits</th>
<th>Spring Credits</th>
<th>Summer Credits</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVE 605</td>
<td>3.0 CIVE 702</td>
<td>3.0 CIVE 703</td>
<td>3.0 Vacation</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>CIVE 615</td>
<td>3.0 CIVE 708</td>
<td>3.0 Technical Electives</td>
<td>6.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIVE 701</td>
<td>3.0 Technical Electives</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Fall Credits</th>
<th>Winter Credits</th>
<th>Spring Credits</th>
<th>Summer Credits</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVE 997</td>
<td>9.0 CIVE 997</td>
<td>9.0 CIVE 997</td>
<td>9.0 Vacation</td>
<td>0.0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th>Fall Credits</th>
<th>Winter Credits</th>
<th>Spring Credits</th>
<th>Summer Credits</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVE 997</td>
<td>9.0 CIVE 997</td>
<td>9.0 CIVE 997</td>
<td>9.0 Vacation</td>
<td>0.0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fourth Year</th>
<th>Fall Credits</th>
<th>Winter Credits</th>
<th>Spring Credits</th>
<th>Summer Credits</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVE 997</td>
<td>6.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIVE 998</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Credits 90

Post Bachelor of Science Degree - Water Resources Engineering

<table>
<thead>
<tr>
<th>First Year</th>
<th>Fall Credits</th>
<th>Winter Credits</th>
<th>Spring Credits</th>
<th>Summer Credits</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVE 567</td>
<td>3.0 CIVE 565</td>
<td>3.0 CIVE 564</td>
<td>3.0 Vacation</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>ENVE 681</td>
<td>3.0 Technical Electives</td>
<td>6.0 ENVE 665</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENVS 501</td>
<td>3.0</td>
<td>Technical Electives</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Second Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credits Winter</th>
<th>Credits Spring</th>
<th>Credits Summer</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVE 997</td>
<td>9.0 CIVE 997</td>
<td>9.0 CIVE 997</td>
<td>9.0 Vacation</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>0</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credits Winter</th>
<th>Credits Spring</th>
<th>Credits Summer</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVE 997</td>
<td>9.0 CIVE 997</td>
<td>9.0 CIVE 997</td>
<td>9.0 Vacation</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>0</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credits Winter</th>
<th>Credits Spring</th>
<th>Credits Summer</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVE 997</td>
<td>6.0</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>0</td>
</tr>
</tbody>
</table>

Total Credits 90

Post Master of Science Degree

First Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credits Winter</th>
<th>Credits Spring</th>
<th>Credits Summer</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVE 997</td>
<td>3.0 CIVE 997</td>
<td>3.0 CIVE 997</td>
<td>3.0 Vacation</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>0</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credits Winter</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVE 997</td>
<td>9.0 CIVE 997</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

Total Credits 45

Facilities

Construction Materials Laboratory
This laboratory contains facilities for the study of concrete, asphalt, mortar, soil-cement, and timber materials, and moist cure facilities.

Geosynthetics Laboratory
This laboratory contains a complete suite of physical, mechanical, hydraulic, endurance, and environmental test devices for assessing behavior of geotextiles, geogrids, geonets, geomembranes, and geocomposites.

HVAC and Refrigeration Laboratory
This laboratory contains complete models of heating, ventilation, air conditioning, refrigeration, and pumping system models.

Hydromechanics Laboratory
This laboratory contains a wave channel tilting flume, pipe friction equipment, bench demonstration equipment, and a beach erosion model.

Soil Mechanics and Geoenvironmental Laboratory
This laboratory contains triaxial and direct shear equipment, controlled environmental chambers, consolidation tests, flexwall permeameters, and a test bed.

Structural Testing Laboratory
This laboratory contains universal testing machines with 150,000- and 300,000-pound capacity and test beds with MTS dynamic load equipment.

Civil, Architectural and Environmental Engineering Faculty

Abieyuwa Aghayere, PhD (University of Alberta). Professor. Structural design - concrete, steel and wood; structural failure analysis; retrofitting of existing structures; new structural systems and materials; engineering education.

Ivan Bartoli, PhD (University of California, San Diego). Associate Professor. Non-destructive evaluation and structural health monitoring; dynamic identification, stress wave propagation modeling.

Shannon Capps, PhD (Georgia Institute of Technology). Associate Professor. Atmospheric chemistry; data assimilation; advanced sensitivity analysis; inverse modeling.

S.C. Jonathan Cheng, PhD (West Virginia University). Associate Professor. Soil mechanics; geosynthetics; geotechnical engineering; probabilistic design; landfill containments; engineering education.
Yaghoob (Amir) Farnam, PhD (Purdue University). Associate Professor. Advanced and sustainable infrastructure materials; multifunctional, self-responsive and bioinspired construction materials; advanced multiscale manufacturing; characterization, and evaluation of construction materials; durability of cement-based materials.

Patricia Gallagher, PhD (Virginia Polytechnic Institute and State University). Professor. Geotechnical and geoenvironmental engineering; soil improvement; soil improvement; recycled materials in geotechnics.

Patrick Gurian, PhD (Carnegie-Mellon University). Professor. Risk analysis of environmental and infrastructure systems; novel adsorbent materials; environmental standard setting; Bayesian statistical modeling; community outreach and environmental health.

Charles N. Haas, PhD (University of Illinois, Urbana-Champaign) Program Head for Environmental Engineering; L. D. Betz Professor of Environmental Engineering. Water treatment; risk assessment; bioterrorism; environmental modeling and statistics; microbiology; environmental health.

Simi Hoque, PhD (University of California - Berkeley) Program Head for Architectural Engineering. Professor. Computational methods to reduce building energy and environmental impacts, urban metabolism, thermal comfort, climate resilience.

Y. Grace Hsuan, PhD (Imperial College). Professor. Durability of polymeric construction materials; advanced construction materials; and performance of geosynthetics.

Joseph B. Hughes, PhD (University of Iowa). Distinguished University Professor. Biological processes and applications of nanotechnology in environmental systems.

L. James Lo, PhD (University of Texas at Austin). Associate Professor. Architectural fluid mechanics; building automation and autonomy; implementation of natural and hybrid ventilation in buildings; airflow distribution in buildings; large-scale air movement in an urban built environment; building and urban informatics; data-enhanced sensing and control for optimal building operation and management; novel data gathering methods for building/urban problem solving; interdisciplinary research on occupant behaviors in the built environment.

Franco Montalto, PhD (Cornell University). Professor. Effects of built infrastructure on societal water needs, ecohydrologic patterns and processes, ecological restoration, green design, and water interventions.

Mira S. Olson, PhD (University of Virginia), Associate Professor. Peace engineering; source water quality protection and management; contaminant and bacterial fate and transport; community engagement.

Miguel A. Pando, PhD (Virginia Polytechnic Institute and State University). Associate Professor. Laboratory testing of geomaterials; geotechnical aspects of natural hazards; soil-structure-interaction; geotechnical engineering.

Matthew Reichenbach, PhD (University of Austin at Texas). Assistant Teaching Professor. Design and behavior of steel structures, bridge engineering, structural stability.

Michael Ryan, PhD (Drexel University) Associate Department Head of Graduate Studies. Associate Teaching Professor. Microbial Source Tracking (MST); Quantitative Microbial Risk Assessment (QMRA); dynamic engineering systems modeling; molecular microbial biology; phylogenetics; metagenomics; bioinformatics; environmental statistics; engineering economics; microbiology; potable and wastewater quality; environmental management systems.

Christopher Sales, PhD (University of California, Berkeley). Associate Professor. Environmental microbiology and biotechnology; biodegradation of environmental contaminants; microbial processes for energy and resource recovery from waste; application of molecular biology, analytical chemistry and bioinformatic techniques to study environmental biological systems.

Robert Swan Teaching Professor. Geotechnical and geosynthetic engineering; soil/geosynthetic interaction and performance; laboratory and field geotechnical/geosynthetic testing.

Sharon Walker, PhD (Yale University) Dean, College of Engineering. Distinguished Professor. Water quality systems engineering.

Michael Waring, PhD (University of Texas at Austin) Department Head, Civil, Architectural, and Environmental Engineering. Associate Professor. Indoor air quality and building sustainability; indoor particulate matter fate and transport; indoor chemistry and particle formation; secondary impacts of control technologies and strategies.

Jin Wen, PhD (University of Iowa). Professor. Architectural engineering; Building Energy Efficiency; Intelligent Building; Net-zero Building; and Indoor Air Quality.

Aspasia Zerva, PhD (University of Illinois, Urbana-Champaign). Professor. Earthquake engineering; mechanics; seismology; structural reliability; system identification; advanced computational methods in structural analysis.
Emeritus Faculty

A. Emin Aktan, PhD *(University of Illinois, Urbana-Champaign)*. Professor Emeritus. Health monitoring and management of large infrastructures with emphasis on health monitoring.

Eugenia Ellis, PhD, AIA *(Virginia Polytechnic Institute and State University)*. Professor Emerita. Natural and electrical light sources and effects on biological rhythms and health outcomes; ecological strategies for smart, sustainable buildings of the nexus of health, energy, and technology.

Ahmad Hamid, PhD *(McMaster University)*. Professor Emeritus. Engineered masonry; seismic behavior, design and retrofit of masonry structures; development of new materials and building systems.

Harry G. Harris, PhD *(Cornell University)*. Professor Emeritus. Structural models; dynamics of structures, plates and shells; industrialized building construction.

Joseph P. Martin, PhD *(Colorado State University)*. Professor Emeritus. Geotechnical and geoenvironmental engineering; hydrology; transportation; waste management.

James E. Mitchell, MArch *(University of Pennsylvania)*. Professor Emeritus. Architectural engineering design; building systems; engineering education.

Joseph V. Mullin, PhD *(Pennsylvania State University)*. Teaching Professor Emeritus. Structural engineering; failure analysis; experimental stress analysis; construction materials; marine structures.

Computer Engineering

Major: Computer Engineering
Degree Awarded: Master of Science (MS)
Calendar Type: Quarter
Minimum Required Credits: 45.0
Co-op Option: Available for full-time, on-campus master's-level students
Classification of Instructional Programs (CIP) code: 14.0901
Standard Occupational Classification (SOC) code: 15-1132; 15-1133; 15-1143; 17-2031

About the Program

The computer engineering curriculum is designed to: (1) address the needs of students with a variety of different backgrounds; (2) ensure that graduates will have adequate knowledge and skills in at least one area of specialization; (3) meet the immediate needs of working students as well as to adequately prepare full-time students for a real-world technological environment; and (4) equip students with tools to grasp and develop new technologies and trends.

The Master of Science in Computer Engineering degree requires a minimum of 45.0 approved credits chosen in accordance with a plan of study arranged in consultation with the student's advisor and the departmental graduate advisor. Up to but not exceeding 9.0 research/thesis credits may be taken by students who choose to write a master's thesis. Students who elect a non-thesis option are also encouraged to engage in research, by registering for supervised research credits (not to exceed 9.0 credits).

Students within the Master of Science in Computer Engineering are eligible to take part in the Graduate Coop Program, which combines classroom coursework with a six-month, full-time work experience. For more information, visit the Steinbright Career Development Center's website (http://www.drexel.edu/scdc/co-op/graduate/).

Additional Information

For more information, visit the Department of Electrical and Computer Engineering (https://drexel.edu/engineering/academics/departments/electrical-computer-engineering/) website.

Admission Requirements

Applicants should have an undergraduate degree equivalent to a US bachelor's degree in computer engineering, computer science, or electrical engineering. Students holding degrees in other engineering and science disciplines with appropriate coursework or training will also be considered.

Appropriate coursework includes experience with all of the following: Software (advanced programming and operating systems); Computer Architecture (digital systems design, computer organization and architecture); Algorithms and Data Structures; Computer Networks. Students must have a minimum 3.0 GPA (on a 4.0 scale) for the last two years of undergraduate studies, as well as for any subsequent graduate-level work.

The GRE General Test is required of applicants to full-time MS and PhD programs. Students whose native language is not English and who do not hold a degree from a US institution must take the Test of English as a Foreign Language (TOEFL).
Degree Requirements

The Master of Science in Computer Engineering curriculum encompasses 45.0 approved credit hours, chosen in accordance with the following requirements and a plan of study arranged with the departmental graduate advisor in consultation with the student’s research advisor, if applicable. Before the end of the first quarter in the Department of Electrical and Computer Engineering, for a full-time student, or by the end of the first year for a part-time student, plan of study must be filed and approved with the departmental graduate advisor.

A total of at least 30.0 credit hours must be taken from among the graduate course offerings of the Department of Electrical and Computer Engineering. These credits must be taken at Drexel University. No transfer credit may be used to fulfill these requirements, regardless of content equivalency.

The remaining courses needed to reach the minimum credit hour requirement for the degree program are considered elective courses. Elective courses can be chosen from among the graduate course offerings of the Department of Electrical and Computer Engineering; other departments within the College of Engineering; the School of Biomedical Science, Engineering and Health Systems; the Department of Mathematics; the Department of Physics; the Department of Chemistry, the Department of Biology, and the Department of Computer Science. In order to have courses outside of these departments and schools count towards degree completion, they must be approved by the departmental graduate advisors prior to registration for said courses.

Please note that ECEC 500 *Fundamentals of Computer Hardware* and ECEC 600 *Fundamentals of Computer Networks* do not count toward the credit requirements to complete the MS in Electrical Engineering degree program.

Computer Engineering (ECEC) 500+ level Courses	21.0
General Electrical and Computer Engineering (ECE) Courses *	9.0
Mathematical Foundations Requirement	
6.0 credits from one of the following courses must be included within (not in addition to) the 45.0 total required MS credits:	
CS 525	Theory of Computation
CS 567	Applied Symbolic Computation
CS 583	Introduction to Computer Vision
CS 613	Machine Learning
CS 621	Approximation Algorithms
CS 623	Computational Geometry
ECES 511	Fundamentals of Systems I
ECES 512	Fundamentals of Systems II
ECES 513	Fundamentals of Systems III
ECES 521	Probability & Random Variables
ECES 522	Random Process & Spectral Analysis
ECES 523	Detection & Estimation Theory
ECES 811	Optimization Methods for Engineering Design
ECET 602	Information Theory and Coding
OPR 624	Advanced Mathematical Program
OPR 992	Applied Math Programming
MATH 500-900 level Elective Courses **	15.0
Total Credits	45.0

* 500+ level courses from subject codes ECEC, ECEE, ECEP, ECES, ECET, ECE.
** 500+ level courses in the following areas: ECEC, ECEE, ECEP, ECES, ECET, ECE, AE, CHE, CIVE, CMGT, EGMT, ENGR, ENVE, ET, MATE, MEM, PROJ, PRMT, SYSE, BMES, MATH, PHYS, CHEM, BIO, OPR, CS.

Options for Degree Fulfillment

Although not required, students are encouraged to complete a Master’s Thesis as part of the MS studies. Those students who choose the thesis option may count up to 9.0 research/thesis credits as part of their required credit hour requirements.

Students may choose to participate in the Graduate Co-Op Program working on curriculum related projects. Graduate Co-op enables graduate students to alternate class terms with a six-month period of hands-on experience, gaining access to employers in their chosen industries. Whether co-op takes students throughout the United States or abroad, they are expanding their professional networks, enhancing their resumes, and bring that experience back to the classroom and their peers.

For more information on curricular requirements, visit the Department of Electrical and Computer Engineering (http://drexel.edu/ece/)’s website.
Sample Plan of Study

First Year

<table>
<thead>
<tr>
<th></th>
<th>Fall Credits</th>
<th>Winter Credits</th>
<th>Spring Credits</th>
<th>Summer Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECEC Courses</td>
<td>6.0</td>
<td>ECEC Courses</td>
<td>6.0</td>
<td>3.0 VACATION</td>
</tr>
<tr>
<td>Elective</td>
<td>3.0</td>
<td>Elective</td>
<td>3.0</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>Total</td>
<td>Total</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>0</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th></th>
<th>Fall Credits</th>
<th>Winter Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECEC Course</td>
<td>3.0</td>
<td>ECEC Course</td>
</tr>
<tr>
<td>General ECE Course</td>
<td>3.0</td>
<td>General ECE Courses</td>
</tr>
<tr>
<td>Elective</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

Total Credits 45

Accelerated Degree

Bachelor's/Master's Accelerated Degree Program

The ECE Department offers outstanding students the opportunity to receive two diplomas (BS and MS) at the same time. The program requires five (5) years to complete. BSMS applicants, who represent some of the best undergraduates students in the department, can work with faculty members on research projects and also have the option to pursue MS Thesis. This program prepares individuals for careers in research and development; many of its past graduates continued their studies toward a PhD.

Facilities

Drexel University and the Electrical and Computer Engineering Department are nationally recognized for a strong history of developing innovative research. Research programs in the ECE Department prepare students for careers in research and development, and aim to endow graduates with the ability to identify, analyze, and address new technical and scientific challenges. The ECE Department is well equipped with state-of-the-art facilities in each of the following ECE Research laboratories:

Research Laboratories at the ECE Department

Adaptive Signal Processing and Information Theory Research Group

The Adaptive Signal Processing and Information Theory Research Group conducts research in the area of signal processing and information theory. Our main interests are belief/expectation propagation, turbo decoding and composite adaptive system theory. We are currently doing projects on the following topics:

- Delay mitigating codes for network coded systems
- Distributed estimation in sensor networks via expectation propagation
- Turbo speaker identification
- Performance and convergence of expectation propagation
- Investigating bounds for SINR performance of autocorrelation based channel shorteners

Applied Networking Research Lab

Applied Networking Research Lab (ANRL) projects focus on modeling and simulation as well as experimentation in wired, wireless and sensor networks. ANRL is the home of MuTANT, a Multi-Protocol Label Switched Traffic Engineering and Analysis Testbed composed of 10 high-end Cisco routers and several PC-routers, also used to study other protocols in data networks as well as automated network configuration and management. The lab also houses a sensor network testbed.

Bioimage Laboratory

Uses computer gaming hardware for enhanced and affordable 3-D visualization, along with techniques from information theory and machine learning to combine the exquisite capabilities of the human visual system with computational sensing techniques for analyzing vast quantities of image sequence data.

Data Fusion Laboratory

The Data Fusion Laboratory investigates problems in multisensory detection and estimation, with applications in robotics, digital communications, radar, and target tracking. Among the projects in progress: computationally efficient parallel distributed detection architectures, data fusion for robot navigation, modulation recognition and RF scene analysis in time-varying environments, pattern recognition in biological data sequences and large arrays, and hardware realizations of data fusion architectures for target detection and target tracking.
Drexel Network Modeling Laboratory

The Drexel Network Modeling Laboratory investigates problems in the mathematical modeling of communication networks, with specific focus on wireless ad hoc networks, wireless sensor networks, and supporting guaranteed delivery service models on best effort and multipath routed networks. Typical methodologies employed in our research include mathematical modeling, computer simulation, and performance optimization, often with the end goal of obtaining meaningful insights into network design principles and fundamental performance tradeoffs.

Drexel University Nuclear Engineering Education Laboratory

The field of nuclear engineering encompasses a wide spectrum of occupations, including nuclear reactor design, medical imaging, homeland security, and oil exploration. The Drexel University Nuclear Engineering Education Laboratory (DUNEEL) provides fundamental hands on understanding for power plant design and radiation detection and analysis. Software based study for power plant design, as well as physical laboratory equipment for radiation detection, strengthen the underlying concepts used in nuclear engineering such that the student will comprehend and appreciate the basic concepts and terminology used in various nuclear engineering professions. Additionally, students use the laboratory to develop methods for delivering remote, live time radiation detection and analysis. The goal of DUNEEL is to prepare students for potential employment in the nuclear engineering arena.

Drexel VLSI Laboratory

The Drexel VLSI Laboratory investigates problems in the design, analysis, optimization and manufacturing of high performance (low power, high throughput) integrated circuits in contemporary CMOS and emerging technologies. Suited with industrial design tools for integrated circuits, simulation tools and measurement beds, the VLSI group is involved with digital and mixed-signal circuit design to verify the functionality of the discovered novel circuit and physical design principles. The Drexel VLSI laboratory develops design methodologies and automation tools in these areas, particularly in novel clocking techniques, featuring resonant clocking, and interconnects, featuring wireless interconnects.

Drexel Wireless Systems Laboratory

The Drexel Wireless Systems Laboratory (DWSL) contains an extensive suite of equipment for constructing, debugging, and testing prototype wireless communications systems. Major equipment within DWSL includes:

- software defined radio network testbeds for rapidly prototyping new communications and network systems,
- electromagnetic anechoic chamber and reverberation chambers for testing new wireless technologies,
- experimental cell tower for field testing new wireless technologies.

The lab is also equipped with network analyzers, high speed signal generators, oscilloscopes, and spectrum analyzers as well as several Zigbee development platforms for rapidly prototyping sensor networks. The lab offers laboratory coursework in wireless network security, collaborative intelligent radio networks, and fundamental analog and digital communication systems.

Ecological and Evolutionary Signal-processing and Informatics Laboratory

The Ecological and Evolutionary Signal-processing and Informatics Laboratory (EESI) seeks to solve problems in high-throughput genomics and engineer better solutions for biochemical applications. The lab’s primary thrust is to enhance the use of high-throughput DNA sequencing technologies with pattern recognition and signal processing techniques. Applications include assessing the organism content of an environmental sample, recognizing/classifying potential and functional genes, inferring environmental factors and inter-species relationships, and inferring microbial evolutionary relationships from short-read DNA/RNA fragments. The lab also investigates higher-level biological systems such as modeling and controlling chemotaxis, the movement of cells.

Electric Power Engineering Center

This newly established facility makes possible state-of-the-art research in a wide variety of areas, ranging from detailed theoretical model study to experimental investigation in its high voltage laboratories. The mission is to advance and apply scientific and engineering knowledge associated with the generation, transmission, distribution, use, and conservation of electric power. In pursuing these goals, this center works with electric utilities, state and federal agencies, private industries, nonprofit organizations and other universities on a wide spectrum of projects. Research efforts, both theoretical and experimental, focus on the solution of those problems currently faced by the electric power industry. Advanced concepts for electric power generation are also under investigation to ensure that electric power needs will be met at the present and in the future.

Electronic Design Automation Facility

Industrial-grade electronic design automation software suite and intergrated design environment for digital, analog and mixed-signal systems development. Field Programmable Gate Array (FPGA) development hardware. Most up-to-date FPGA/embedded system development hardware kits. Printed circuit board production facility. Also see Drexel VLSI Laboratory.

Microwave-Photonics Device Laboratories

The laboratory is equipped with test and measurement equipment for high-speed analog and digital electronics and fiber optic systems. The test equipment includes network analyzers from Agilent (100kHz- 1.3 GHz and 45 Mhz-40 GHz), and Anritsu (45 MHz-6 GHz); spectrum analyzers from Tektronix, HP, and Agilent with measurement capability of DC to 40 GHz and up to 90 GHz using external mixers; signal generators and communication
channel modulators from HP, Rhode-Schwartz, Systron Donner, and Agilent; microwave power meter and sensor heads, assortment of passive and active microwave components up to 40 GHz; data pattern generator and BER tester up to 3Gb/s; optical spectrum analyzer from Anritsu and power meters from HP; single and multimode fiber optic based optical transmitter and receiver boards covering ITU channels at data rates up to 10Gb/s; passive optical components such as isolator, filter, couplers, optical connectors and fusion splicer; LPKF milling machine for fabrication of printed circuit boards; wire-bonding and Cascade probe stations; Intercontinental test fixtures for testing of MMIC circuits and solid-state transistors; state-of-the-art microwave and electromagnetic CAD packages such as Agilent ADS, ANSYS HFSS, and COMSOL multi-physics module.

Multimedia & Information Security Lab [MISL]

The Multimedia and Information Security Lab (MISL) develops algorithms to detect fake images and videos, along with algorithms to determine the true source an image or video. This research is particularly important because widely available editing software enables multimedia forgers to create perceptually realistic forgeries. Our goal at MISL, is to conduct research that provides information verification and security in scenarios when an information source cannot be trusted.

The research conducted at MISL is part of a new area, known as multimedia forensics, which lies at the intersection of many areas in machine learning and artificial intelligence, signal processing, image and video processing, game theory, etc. Our algorithms work by identifying or learning visually imperceptible traces left in images and videos by processing operations. We use these traces to detect editing or forgery as well as to link an image or video back to the camera that captured it. We also perform research on anti-forensic operations designed to fool forensic techniques. By studying anti-forensics, researchers can identify and address weaknesses in existing forensic techniques as well as develop techniques capable of identifying the use of anti-forensics.

Music and Entertainment Technology Laboratory

The Music and Entertainment Technology Laboratory (MET-lab) is devoted to research in digital media technologies that will shape the future of entertainment, especially in the areas of sound and music. We employ digital signal processing and machine learning to pursue novel applications in music information retrieval, music production and processing technology, and new music interfaces. The MET-lab is also heavily involved in outreach programs for K-12 students and hosts the Summer Music Technology program, a one-week learning experience for high school students. Lab facilities include a sound isolation booth for audio and music recording, a digital audio workstation running ProTools, two large multi-touch display interfaces of our own design, and a small computing cluster for distributed processing.

NanoPhotonics+ Lab

Our research is primarily in the area of nanophotonics with a focus on the nanoscale interaction of light with matter. Interests include: liquid crystal/polymer composites for gratings, lenses and HOEs; liquid crystal interactions with surfaces and in confined nanospaces; alternative energy generation through novel photon interactions; ink-jet printed conducting materials for RF and photonic applications; and the creation and development of smart textiles technologies including soft interconnects, sensors, and wireless implementations.

Opto-Electro-Mechanical Laboratory

This lab concentrates on the system integration on optics, electronics, and mechanical components and systems, for applications in imaging, communication, and biomedical research. Research areas include: Programmable Imaging with Optical Micro-electrical-mechanical systems (MEMS), in which microscopic mirrors are used to image light into a single photodetector; Pre-Cancerous Detection using White Light Spectroscopy, which performs a cellular size analysis of nuclei in tissue; Free-space Optical Communication using Space Time Coding, which consists of diffused light for computer-to-computer communications, and also tiny lasers and detectors for chip-to-chip communication; Magnetic Particle Locomotion, which showed that particles could swim in a uniform field; and Transparent Antennas using Polymer, which enables antennas to be printed through an ink-jet printer.

Plasma and Magnetics Laboratory

Research is focused on applications of electrical and magnetic technologies to biology and medicine. This includes the subjects of non-thermal atmospheric pressure plasma for medicine, magnetic manipulation of particles for drug delivery and bio-separation, development of miniature NMR sensors for cellular imaging and carbon nanotube cellular probes.

Power Electronics Research Laboratory

The Power Electronics Research Laboratory (PERL) is involved in circuit and design simulation, device modeling and simulation, and experimental testing and fabrication of power electronic circuits. The research and development activities include electrical terminations, power quality, solar photovoltaic systems, GTO modeling, protection and relay coordination, and solid-state circuit breakers. The analysis tools include EMPT, SPICE, and others, which have been modified to incorporate models of such controllable solid-state switches as SCRs, GTOs, and MOSFETs. These programs have a wide variety and range of modeling capabilities used to model electromagnetics and electromechanical transients ranging from microseconds to seconds in duration. The PERL is a fully equipped laboratory with 42 kVA AC and 70 kVA DC power sources and data acquisition systems, which have the ability to display and store data for detailed analysis. Some of the equipment available is a distribution and HV transformer and three phase rectifiers for power sources and digital oscilloscopes for data measuring and experimental analysis. Some of the recent studies performed by the PERL include static VAR compensators, power quality of motor controllers, solid-state circuit breakers, and power device modeling which have been supported by PECO, GE, Gould, and EPRI.
Computer Engineering Faculty

Tom Chmielewski, PhD (Drexel University). Teaching Professor. Modeling and simulation of electro-mechanical systems; optimal, adaptive and nonlinear control; DC motor control; system identification; kalman filters (smoothing algorithms, tracking); image processing; robot design; biometric technology and design of embedded systems for control applications utilizing MATLAB and SIMULINK.

Fernand Cohen, PhD (Brown University). Professor. Surface modeling; tissue characterization and modeling; face modeling; recognition and tracking.

Andrew Cohen, PhD (Rensselaer Polytechnic Institute). Associate Professor. Image processing; multi-target tracking; statistical pattern recognition and machine learning; algorithmic information theory; 5-D visualization.

Kapil Dandekar, PhD (University of Texas-Austin) Director of the Drexel Wireless Systems Laboratory (DWSL); Associate Dean of Research, College of Engineering. Professor. Cellular/mobile communications and wireless LAN; smart antenna/MIMO for wireless communications; applied computational electromagnetics; microwave antenna and receiver development; free space optical communication; ultrasonic communication; sensor networks for homeland security; ultrawideband communication.

Afshin Daryoush, ScD (Drexel University). Professor. Digital and microwave photonics; nonlinear microwave circuits; RFIC; medical imaging.

Anup Das, PhD (University of Singapore). Assistant Professor. Design of algorithms for neuromorphic computing, particularly using spiking neural networks, dataflow-based design of neuromorphic computing system, design of scalable computing system; hardware-software co-design and management, and thermal and power management of many-core embedded systems.

Bruce A. Eisenstein, PhD (University of Pennsylvania). Arthur J. Rowland Professor of Electrical and Computer Engineering. Pattern recognition; estimation; decision theory.

Adam K. Fontecchio, PhD (Brown University) Director, Center for the Advancement of STEM Teaching and Learning Excellence (CASTLE). Professor. Electro-optics; remote sensing; active optical elements; liquid crystal devices.

Gary Friedman, PhD (University of Maryland-College Park) Associate Department Head for Graduate Affairs. Professor. Biological and biomedical applications of nanoscale magnetic systems.

Allon Guez, PhD (University of Florida). Professor. Intelligent control systems; robotics, biomedical, automation and manufacturing; business systems engineering.

Peter R. Herczfeld, PhD (University of Minnesota). Professor. Lightweight technology; microwaves; millimeter waves; fiber optic and integrated optic devices.

Leonid Hrebien, PhD (Drexel University). Professor. Tissue excitability; acceleration effects on physiology; bioinformatics.

Nagarajan Kandasamy, PhD (University of Michigan) Associate Department Head for Undergraduate Affairs. Associate Professor. Embedded systems, self-managing systems, reliable and fault-tolerant computing, distributed systems, computer architecture, and testing and verification of digital systems.

Youngmoo Kim, PhD (MIT) Director, Expressive and Creative Interactive Technologies (ExCITe) Center. Professor. Audio and music signal processing, voice analysis and synthesis, music information retrieval, machine learning.

Fei Lu, PhD (University of Michigan). Assistant Professor. Power electronics; wireless power transfer technology for the high-power electric vehicles and the low-power electronic devices.

Karen Miu, PhD (Cornell University). Professor. Power systems; distribution networks; distribution automation; optimization; system analysis.

Bahram Nabet, PhD (University of Washington). Professor. Optoelectronics; fabrication and modeling; fiber optic devices; nanoelectronics; nanowires.

Prawat Nagvajara, PhD (Boston University). Associate Professor. System on a chip; embedded systems; power grid computation; testing of computer hardware; fault-tolerant computing; VLSI systems; error control coding.

Dagmar Niebur, PhD (Swiss Federal Institute of Technology). Associate Professor. Intelligent systems; dynamical systems; power system monitoring and control.

Christopher Peters, PhD (University of Michigan). Teaching Professor. Nuclear reactor design; ionizing radiation detection; nuclear forensics; power plant reliability and risk analysis; naval/marine power and propulsion; directed energy/high power microwaves; nonstationary signal processing; radar; electronic survivability/susceptibility to harsh environments; electronic warfare.

Karkal Prabhu, PhD (Harvard University). Teaching Professor. Computer engineering education; computer architecture; embedded systems.

Gail L. Rosen, PhD (Georgia Institute of Technology). Associate Professor. Signal processing, signal processing for biological analysis and modeling, bio-inspired designs, source localization and tracking.
Ioannis Savidis, PhD (University of Rochester). Associate Professor. Analysis, modeling, and design methodologies for high performance digital and mixed-signal integrated circuits; Emerging integrated circuit technologies; Electrical and thermal modeling and characterization, signal and power integrity, and power and clock delivery for 3-D IC technologies

Kevin J. Scoles, PhD (Dartmouth College) Associate Dean for Undergraduate Affairs. Associate Professor. Microelectronics; electric vehicles; solar energy; biomedical electronics.

Harish Sethu, PhD (Lehigh University). Associate Professor. Protocols, architectures and algorithms in computer networks; computer security; mobile ad hoc networks; large-scale complex adaptive networks and systems.

James Shackleford, PhD (Drexel University). Associate Professor. Medical image processing, high performance computing, embedded systems, computer vision, machine learning

P. Mohana Shankar, PhD (Indian Institute of Technology) Allen Rothwarf Professor of Electrical and Computer Engineering. Professor. Wireless communications; biomedical ultrasonics; fiberoptic bio-sensors.

Matthew Stamm, PhD (University of Maryland, College Park). Associate Professor. Information Security; multimedia forensics and anti-forensics; information verification; adversarial dynamics; signal processing

Baris Taskin, PhD (University of Pittsburgh). Professor. Very large-scale integration (VLSI) systems, computer architecture, circuits and systems, electronic design automation (EDA), energy efficient computing.

John Walsh, PhD (Cornell University). Associate Professor. Bounding the region of entropic vectors and its implications for the limits of communication networks, big data distributed storage systems, and graphical model based machine learning; efficient computation and analysis of rate regions for network coding and distributed storage; code construction, polyhedral computation, hierarchy, and symmetry

Steven Weber, PhD (University of Texas-Austin) Department Head. Professor. Mathematical modeling of computer and communication networks, specifically streaming multimedia and ad hoc networks.

Jaudelice de Oliveira, PhD (Georgia Institute of Technology). Associate Professor. Software-defined networking; social and economic networks; network security; design and analysis of protocols, algorithms and architectures in computer networks, particularly solutions for the Internet of Things

Emeritus Faculty

Suryadevara Basavaiah, PhD (University of Pennsylvania). Professor Emeritus. Computer engineering; computer engineering education; custom circuit design; VLSI technology; process and silicon fabrication

Eli Fromm, PhD (Jefferson Medical College). Professor Emeritus. Engineering education; academic research policy; bioinstrumentation; physiologic systems.

Computer Engineering PhD

Major: Computer Engineering
Degree Awarded: Doctor of Philosophy (PhD)
Calendar Type: Quarter
Minimum Required Credits: 90.0
Co-op Option: None
Classification of Instructional Programs (CIP) code: 14.0901
Standard Occupational Classification (SOC) code: 15-1132; 15-1133; 15-1143; 17-2031

About the Program

The computer engineering curriculum is designed to: (1) address the needs of students with a variety of different backgrounds; (2) ensure that graduates will have adequate knowledge and skills in at least one area of specialization; (3) meet the immediate needs of working students as well as to adequately prepare full-time students for a real-world technological environment; and (4) equip students with tools to grasp and develop new technologies and trends.

Additional Information

For more information, visit the Department of Electrical and Computer Engineering (https://drexel.edu/engineering/academics/departments/electrical-computer-engineering/) website.
Admission Requirements
Applicants should have an undergraduate degree equivalent to a US bachelor’s degree in computer engineering, computer science, or electrical engineering. Students holding degrees in other engineering and science disciplines with appropriate coursework or training will also be considered.

Appropriate coursework includes experience with all of the following: Software (advanced programming and operating systems); Computer Architecture (digital systems design, computer organization and architecture); Algorithms and Data Structures; Computer Networks. Students must have a minimum 3.0 GPA (on a 4.0 scale) for the last two years of undergraduate studies, as well as for any subsequent graduate-level work.

The GRE General Test is required of applicants to the full-time PhD program. Students whose native language is not English and who do not hold a degree from a US institution must take the Test of English as a Foreign Language (TOEFL).

Additional Information
For more information on how to apply, visit Drexel’s Admissions page for Computer Engineering (http://www.drexel.edu/grad/programs/coe/computer-engineering/).

Degree Requirements
General Requirements
The following general requirements must be satisfied in order to complete the PhD in Electrical Engineering:

- 90.0 credit hours total
- candidacy examination
- research proposal
- dissertation defense

Students entering with a master’s degree in electrical or computer engineering or a related field will be considered a post-masters PhD student and will only be required to complete a total of 45.0 credit hours, in accordance with University policy.

Curriculum
Appropriate coursework is chosen in consultation with the student’s research advisor. A plan of study must be developed by the student to encompass the total number of required credit hours. Both the departmental graduate advisor and the student’s research advisor must approve this plan.

Candidacy Examination
The candidacy examination explores the depth of understanding of the student in his/her specialty area. The student is expected to be familiar with, and be able to use, the contemporary tools and techniques of the field and to demonstrate familiarity with the principal results and key findings.

The student, in consultation with his/her research advisor, will declare a principal technical area for the examination. The examination includes the following three parts:

- A self-study of three papers from the archival literature in the student’s stated technical area, chosen by the committee in consultation with the student.
- A written report (15 pages or less) on the papers, describing their objectives, key questions and hypotheses, methodology, main results and conclusions. Moreover, the student must show in an appendix independent work he/she has done on at least one of the papers – such as providing a full derivation of a result or showing meaningful examples, simulations or applications.
- An oral examination which takes the following format:
 - A short description of the student’s principal area of interest (5 minutes, by student).
 - A review of the self-study papers and report appendix (25-30 minutes, by students).
 - Questions and answers on the report, the appendix and directly related background (40-100 minutes, student and committee).

In most cases, the work produced during the candidacy examination will be a principal reference for the student’s PhD dissertation; however, this is not a requirement.

Research Proposal
Each student, after having attained the status of PhD Candidate, must present a research proposal to a committee of faculty and industry members, chosen with his/her research advisor, who are knowledgeable in the specific area of research. This proposal should outline the specific intended subject of study; i.e., it should present a problem statement, pertinent background, methods of study to be employed, expected difficulties and uncertainties and the anticipated form, substance and significance of the results.
The purpose of this presentation is to verify suitability of the dissertation topic and the candidate’s approach, and to obtain the advice and guidance of oversight of mature, experienced investigators. It is not to be construed as an examination, though approval by the committee is required before extensive work is undertaken. The thesis proposal presentation must be open to all; announcements regarding the proposal presentation must be made in advance.

The thesis advisory committee will have the sole responsibility of making any recommendations regarding the research proposal. It is strongly recommended that the proposal presentation be given as soon as possible after the successful completion of the candidacy examination.

Dissertation Defense

Dissertation Defense procedures are described on the Graduate College’s webpage (http://drexel.edu/graduatecollege/academics/thesis-and-dissertation/). The student must be a PhD candidate for at least one year before he/she can defend his/her doctoral thesis.

Facilities

Drexel University and the Electrical and Computer Engineering Department are nationally recognized for a strong history of developing innovative research. Research programs in the ECE Department prepare students for careers in research and development, and aim to endow graduates with the ability to identify, analyze, and address new technical and scientific challenges. The ECE Department is well equipped with state-of-the-art facilities in each of the following ECE Research laboratories:

Research Laboratories at the ECE Department

Adaptive Signal Processing and Information Theory Research Group

The Adaptive Signal Processing and Information Theory Research Group conducts research in the area of signal processing and information theory. Our main interests are belief/expectation propagation, turbo decoding and composite adaptive system theory. We are currently doing projects on the following topics:

- Delay mitigating codes for network coded systems
- Distributed estimation in sensor networks via expectation propagation
- Turbo speaker identification
- Performance and convergence of expectation propagation
- Investigating bounds for SINR performance of autocorrelation based channel shorteners

Applied Networking Research Lab

Applied Networking Research Lab (ANRL) projects focus on modeling and simulation as well as experimentation in wired, wireless and sensor networks. ANRL is the home of MuTANT, a Multi-Protocol Label Switched Traffic Engineering and Analysis Testbed composed of 10 high-end Cisco routers and several PC-routers, also used to study other protocols in data networks as well as automated network configuration and management. The lab also houses a sensor network testbed.

Bioimage Laboratory

Uses computer gaming hardware for enhanced and affordable 3-D visualization, along with techniques from information theory and machine learning to combine the exquisite capabilities of the human visual system with computational sensing techniques for analyzing vast quantities of image sequence data.

Data Fusion Laboratory

The Data Fusion Laboratory investigates problems in multisensory detection and estimation, with applications in robotics, digital communications, radar, and target tracking. Among the projects in progress: computationally efficient parallel distributed detection architectures, data fusion for robot navigation, modulation recognition and RF scene analysis in time-varying environments, pattern recognition in biological data sequences and large arrays, and hardware realizations of data fusion architectures for target detection and target tracking.

Drexel Network Modeling Laboratory

The Drexel Network Modeling Laboratory investigates problems in the mathematical modeling of communication networks, with specific focus on wireless ad hoc networks, wireless sensor networks, and supporting guaranteed delivery service models on best effort and multipath routed networks. Typical methodologies employed in our research include mathematical modeling, computer simulation, and performance optimization, often with the end goal of obtaining meaningful insights into network design principles and fundamental performance tradeoffs.

Drexel University Nuclear Engineering Education Laboratory

The field of nuclear engineering encompasses a wide spectrum of occupations, including nuclear reactor design, medical imaging, homeland security, and oil exploration. The Drexel University Nuclear Engineering Education Laboratory (DUNEEL) provides fundamental hands on understanding for power plant design and radiation detection and analysis. Software based study for power plant design, as well as physical laboratory equipment for radiation
The Drexel Wireless Systems Laboratory (DWSL) contains an extensive suite of equipment for constructing, debugging, and testing prototype wireless communications systems. Major equipment within DWSL includes:

- software defined radio network testbeds for rapidly prototyping new communications and network systems,
- electromagnetic anechoic chamber and reverberation chambers for testing new wireless technologies,
- experimental cell tower for field testing new wireless technologies.

The lab is also equipped with network analyzers, high speed signal generators, oscilloscopes, and spectrum analyzers as well as several Zigbee development platforms for rapidly prototyping sensor networks. The lab offers laboratory coursework in wireless network security, collaborative intelligent radio networks, and fundamental analog and digital communication systems.

The Drexel VLSI Laboratory investigates problems in the design, analysis, optimization and manufacturing of high performance (low power, high throughput) integrated circuits in contemporary CMOS and emerging technologies. Suited with industrial design tools for integrated circuits, simulation tools and measurement beds, the VLSI group is involved with digital and mixed-signal circuit design to verify the functionality of the discovered novel circuit and physical design principles. The Drexel VLSI laboratory develops design methodologies and automation tools in these areas, particularly in novel clocking techniques, featuring resonant clocking, and interconnects, featuring wireless interconnects.

The Ecological and Evolutionary Signal-processing and Informatics Laboratory (EESI) seeks to solve problems in high-throughput genomics and engineer better solutions for biochemical applications. The lab’s primary thrust is to enhance the use of high-throughput DNA sequencing technologies with pattern recognition and signal processing techniques. Applications include assessing the organism content of an environmental sample, recognizing/classifying potential and functional genes, inferring environmental factors and inter-species relationships, and inferring microbial evolutionary relationships from short-read DNA/RNA fragments. The lab also investigates higher-level biological systems such as modeling and controlling chemotaxis, the movement of cells.

This newly established facility makes possible state-of-the-art research in a wide variety of areas, ranging from detailed theoretical model study to experimental investigation in its high voltage laboratories. The mission is to advance and apply scientific and engineering knowledge associated with the generation, transmission, distribution, use, and conservation of electric power. In pursuing these goals, this center works with electric utilities, state and federal agencies, private industries, nonprofit organizations and other universities on a wide spectrum of projects. Research efforts, both theoretical and experimental, focus on the solution of those problems currently faced by the electric power industry. Advanced concepts for electric power generation are also under investigation to ensure that electric power needs will be met at the present and in the future.

Industrial-grade electronic design automation software suite and integrated design environment for digital, analog and mixed-signal systems development. Field Programmable Gate Array (FPGA) development hardware. Most up-to-date FPGA/embedded system development hardware kits. Printed circuit board production facility. Also see Drexel VLSI Laboratory.

The laboratory is equipped with test and measurement equipment for high-speed analog and digital electronics and fiber optic systems. The test equipment includes network analyzers from Agilent (100kHz- 1.3 GHz and 45 MHz-40 GHz), and Anritsu (45 MHz-6 GHz); spectrum analyzers from Tektronix, HP, and Agilent with measurement capability of DC to 40 GHz and up to 90 GHz using external mixers; signal generators and communication channel modulators from HP, Rhode-Schwartz, Systron Donner, and Agilent; microwave power meter and sensor heads, assortment of passive and active microwave components up to 40 GHz ; data pattern generator and BER tester up to 3Gb/s; optical spectrum analyzer from Anritsu and power meters from HP; single and multimode fiber optic based optical transmitter and receiver boards covering ITU channels at data rates up to 10Gb/s; passive optical components such as isolator, filter, couplers, optical connectors and fusion splicer; LPKF milling machine for fabrication of printed circuit boards; wire-bonding and Cascade probe stations; Intercontinental test fixtures for testing of MMIC circuits and solid-state transistors; state-of-the-art microwave and electromagnetic CAD packages such as Agilent ADS, ANSYS HFSS, and COMSOL multi-physics module.

The Multimedia and Information Security Lab (MISL) develops algorithms to detect fake images and videos, along with algorithms to determine the true source an image or video. This research is particularly important because widely available editing software enables multimedia forgers to create...
perceptually realistic forgeries. Our goal at MISL, is to conduct research that provides information verification and security in scenarios when an
information source cannot be trusted.

The research conducted at MISL is part of a new area, known as multimedia forensics, which lies at the intersection of many areas in machine learning
and artificial intelligence, signal processing, image and video processing, game theory, etc. Our algorithms work by identifying or learning visually
imperceptible traces left in images and videos by processing operations. We use these traces to detect editing or forgery as well as to link an image or
video back to the camera that captured it. We also perform research on anti-forensic operations designed to fool forensic techniques. By studying anti-
forensics, researchers can identify and address weaknesses in existing forensic techniques as well as develop techniques capable of identifying the use of anti-forensics.

Music and Entertainment Technology Laboratory

The Music and Entertainment Technology Laboratory (MET-lab) is devoted to research in digital media technologies that will shape the future of
entertainment, especially in the areas of sound and music. We employ digital signal processing and machine learning to pursue novel applications in
music information retrieval, music production and processing technology, and new music interfaces. The MET-lab is also heavily involved in outreach
programs for K-12 students and hosts the Summer Music Technology program, a one-week learning experience for high school students. Lab facilities
include a sound isolation booth for audio and music recording, a digital audio workstation running ProTools, two large multi-touch display interfaces of
our own design, and a small computing cluster for distributed processing.

NanoPhotonics+ Lab

Our research is primarily in the area of nanophotonics with a focus on the nanoscale interaction of light with matter. Interests include: liquid crystal/
polymer composites for gratings, lenses and HOEs; liquid crystal interactions with surfaces and in confined nanospaces; alternative energy generation
through novel photon interactions; ink-jet printed conducting materials for RF and photonic applications; and the creation and development of smart
textiles technologies including soft interconnects, sensors, and wireless implementations.

Opto-Electro-Mechanical Laboratory

This lab concentrates on the system integration on optics, electronics, and mechanical components and systems, for applications in imaging,
communication, and biomedical research. Research areas include: Programmable Imaging with Optical Micro-electrical-mechanical systems (MEMS), in
which microscopic mirrors are used to image light into a single photodetector; Pre-Cancerous Detection using White Light Spectroscopy, which performs
a cellular size analysis of nuclei in tissue; Free-space Optical Communication using Space Time Coding, which consists of diffused light for computer-to-
computer communications, and also tiny lasers and detectors for chip-to-chip communication; Magnetic Particle Locomotion, which showed that particles
could swim in a uniform field; and Transparent Antennas using Polymer, which enables antennas to be printed through an ink-jet printer.

Plasma and Magnetics Laboratory

Research is focused on applications of electrical and magnetic technologies to biology and medicine. This includes the subjects of non-thermal
atmospheric pressure plasma for medicine, magnetic manipulation of particles for drug delivery and bio-separation, development of miniature NMR
sensors for cellular imaging and carbon nanotube cellular probes.

Power Electronics Research Laboratory

The Power Electronics Research Laboratory (PERL) is involved in circuit and design simulation, device modeling and simulation, and experimental
testing and fabrication of power electronic circuits. The research and development activities include electrical terminations, power quality, solar
photovoltaic systems, GTO modeling, protection and relay coordination, and solid-state circuit breakers. The analysis tools include EMPT, SPICE, and
others, which have been modified to incorporate models of such controllable solid-state switches as SCRs, GTOs, and MOSFETs. These programs have
a wide variety and range of modeling capabilities used to model electromagnetics and electromechanical transients ranging from microseconds to
seconds in duration. The PERL is a fully equipped laboratory with 42 kVA AC and 70 kVA DC power sources and data acquisition systems, which have
the ability to display and store data for detailed analysis. Some of the equipment available is a distribution and HV transformer and three phase rectifiers
for power sources and digital oscilloscopes for data measuring and experimental analysis. Some of the recent studies performed by the PERL include
static VAR compensators, power quality of motor controllers, solid-state circuit breakers, and power device modeling which have been supported by
PECO, GE, Gould, and EPRI.

Computer Engineering Faculty

Tom Chmielewski, PhD (Drexel University). Teaching Professor. Modeling and simulation of electro-mechanical systems; optimal, adaptive and non-
linear control; DC motor control; system identification; kalman filters (smoothing algorithms, tracking); image processing; robot design; biometric
technology and design of embedded systems for control applications utilizing MATLAB and SIMULINK

Fernand Cohen, PhD (Brown University). Professor. Surface modeling; tissue characterization and modeling; face modeling; recognition and tracking.

Andrew Cohen, PhD (Rensselaer Polytechnic Institute). Associate Professor. Image processing; multi-target tracking; statistical pattern recognition and
machine learning; algorithmic information theory; 5-D visualization
Kapil Dandekar, PhD (University of Texas-Austin) Director of the Drexel Wireless Systems Laboratory (DWSL); Associate Dean of Research, College of Engineering. Professor. Cellular/mobile communications and wireless LAN; smart antenna/MIMO for wireless communications; applied computational electromagnetics; microwave antenna and receiver development; free space optical communication; ultrasonic communication; sensor networks for homeland security; ultrawideband communication.

Afshin Daryoush, ScD (Drexel University). Professor. Digital and microwave photonics; nonlinear microwave circuits; RFIC; medical imaging.

Anup Das, PhD (University of Singapore). Assistant Professor. Design of algorithms for neuromorphic computing, particularly using spiking neural networks, dataflow-based design of neuromorphic computing system, design of scalable computing system; hardware-software co-design and management, and thermal and power management of many-core embedded systems

Bruce A. Eisenstein, PhD (University of Pennsylvania). Arthur J. Rowland Professor of Electrical and Computer Engineering. Pattern recognition; estimation; decision theory.

Adam K. Fontecchio, PhD (Brown University) Director, Center for the Advancement of STEM Teaching and Learning Excellence (CASTLE). Professor. Electro-optics; remote sensing; active optical elements; liquid crystal devices.

Gary Friedman, PhD (University of Maryland-College Park) Associate Department Head for Graduate Affairs. Professor. Biological and biomedical applications of nanoscale magnetic systems.

Allon Guez, PhD (University of Florida). Professor. Intelligent control systems; robotics, biomedical, automation and manufacturing; business systems engineering.

Peter R. Herczfeld, PhD (University of Minnesota). Professor. Lightwave technology; microwaves; millimeter waves; fiberoptic and integrated optic devices.

Leonid Hrebien, PhD (Drexel University). Professor. Tissue excitability; acceleration effects on physiology; bioinformatics.

Nagarajan Kandasamy, PhD (University of Michigan) Associate Department Head for Undergraduate Affairs. Associate Professor. Embedded systems, self-managing systems, reliable and fault-tolerant computing, distributed systems, computer architecture, and testing and verification of digital systems.

Youngmoo Kim, PhD (MIT) Director, Expressive and Creative Interactive Technologies (ExCITe) Center. Professor. Audio and music signal processing, voice analysis and synthesis, music information retrieval, machine learning.

Fei Lu, PhD (University of Michigan). Assistant Professor. Power electronics; wireless power transfer technology for the high-power electric vehicles and the low-power electronic devices.

Karen Miu, PhD (Cornell University). Professor. Power systems; distribution networks; distribution automation; optimization; system analysis.

Bahram Nabet, PhD (University of Washington). Professor. Optoelectronics; fabrication and modeling; fiber optic devices; nanoelectronics; nanowires.

Prawat Nagvajara, PhD (Boston University). Associate Professor. System on a chip; embedded systems; power grid computation; testing of computer hardware; fault-tolerant computing; VLSI systems; error control coding.

Dagmar Niebur, PhD (Swiss Federal Institute of Technology). Associate Professor. Intelligent systems; dynamical systems; power system monitoring and control.

Christopher Peters, PhD (University of Michigan). Teaching Professor. Nuclear reactor design; ionizing radiation detection; nuclear forensics; power plant reliability and risk analysis; naval/marine power and propulsion; directed energy/high power microwaves; nonstationary signal processing; radar; electronic survivability/susceptibility to harsh environments; electronic warfare.

Karkal Prabhu, PhD (Harvard University). Teaching Professor. Computer engineering education; computer architecture; embedded systems.

Gail L. Rosen, PhD (Georgia Institute of Technology). Associate Professor. Signal processing, signal processing for biological analysis and modeling, bio-inspired designs, source localization and tracking.

Ioannis Savidis, PhD (University of Rochester). Associate Professor. Analysis, modeling, and design methodologies for high performance digital and mixed-signal integrated circuits; Emerging integrated circuit technologies; Electrical and thermal modeling and characterization, signal and power integrity, and power and clock delivery for 3-D IC technologies.

Kevin J. Scoles, PhD (Dartmouth College) Associate Dean for Undergraduate Affairs. Associate Professor. Microelectronics; electric vehicles; solar energy; biomedical electronics.

Harish Sethu, PhD (Lehigh University). Associate Professor. Protocols, architectures and algorithms in computer networks; computer security; mobile ad hoc networks; large-scale complex adaptive networks and systems.
James Shackleford, PhD (Drexel University). Associate Professor. Medical image processing, high performance computing, embedded systems, computer vision, machine learning.

P. Mohana Shankar, PhD (Indian Institute of Technology) Allen Rothwarf Professor of Electrical and Computer Engineering. Professor. Wireless communications; biomedical ultrasounds; fiber optic bio-sensors.

Matthew Stamm, PhD (University of Maryland, College Park). Associate Professor. Information Security; multimedia forensics and anti-forensics; information verification; adversarial dynamics; signal processing.

Baris Taskin, PhD (University of Pittsburgh). Professor. Very large scal integration (VLSI) systems, computer architecture, circuits and systems, electronic design automation (EDA), energy efficient computing.

John Walsh, PhD (Cornell University). Associate Professor. Bounding the region of entropic vectors and its implications for the limits of communication networks, big data distributed storage systems, and graphical model based machine learning; efficient computation and analysis of rate regions for network coding and distributed storage; code construction, polyhedral computation, hierarchy, and symmetry.

Steven Weber, PhD (University of Texas-Austin) Department Head. Professor. Mathematical modeling of computer and communication networks, specifically streaming multimedia and ad hoc networks.

Jaudelice de Oliveira, PhD (Georgia Institute of Technology). Associate Professor. Software-defined networking; social and economic networks; network security; design and analysis of protocols, algorithms and architectures in computer networks, particularly solutions for the Internet of Things.

Emeritus Faculty

Suryadevara Basavaiah, PhD (University of Pennsylvania). Professor Emeritus. Computer engineering; computer engineering education; custom circuit design; VLSI technology; process and silicon fabrication.

Eli Fromm, PhD (Jefferson Medical College). Professor Emeritus. Engineering education; academic research policy; bioinstrumentation; physiologic systems.

Construction Management

Major: Construction Management
Degree Awarded: Master of Science (MS)
Calendar Type: Quarter
Minimum Required Credits: 45.0
Co-op Option: None
Classification of Instructional Programs (CIP) code: 52.2001
Standard Occupational Classification (SOC) code: 11-9021

About the Program

The Master of Science in Construction Management program gives professionals the opportunity to develop the multidisciplinary skills required of effective construction managers. The program focuses on training professionals to meet the challenge of increasing owner demands, tighter project delivery times and increasing regulation. The program provides the leadership skills professionals need to navigate the many daily challenges construction organizations face in successfully managing construction operations. Students are admitted in the Fall and the Spring terms.

Three concentrations are available: construction project management, real estate, and sustainability and green construction.

Program Goals

The program is designed to increase the students' breadth and depth of knowledge in the principles and practices of construction management. The program serves as an excellent platform to develop senior management for the nation's construction industry.

Graduates of the Master of Science in Construction Management program will:

- exhibit strong technical and managerial skills
- apply scientific methodologies to problem solving
- think critically
- exercise creativity and inject innovation into the process
• operate at the highest level of ethical practice
• employ principles of transformational leadership

Focus Areas
Focused elective courses in the program are available:

Construction Project Management
This series of courses provides the knowledge and skills required to successfully manage complex construction projects. Topics include the hard skills of project management, such as estimating and budgeting, time management, and planning. Other topics include managerial and legal aspects of construction contract administration, international construction practices, strategic planning, quality management, and productivity analysis.

Real Estate
This series of courses allows students to explore the knowledge and skills required to create, maintain, and build environments for living, working and entertainment purposes. Relevant issues include project finance, real estate as investments, design and construction, operations, development law, environmental remediation, public policy, market analysis, and architecture.

Sustainability and Green Construction
Sustainable development means integrating the decision-making process across the project team, so that every decision is made with an eye to the greatest long-term benefits. Currently, in the Leadership in Energy and Environmental Design (LEED) green building rating system, the construction process represents a significant portion of the effort required to achieve high performance building programs. This focus is intended to explore these concepts in detail.

Additional Information
For more information, view the College of Engineering’s Construction Management (https://drexel.edu/engineering/academics/departments/engineering-leadership-society/academic-programs/construction-management/) webpage or contact:

William Grogan
wtg25@drexel.edu
215-895-5943

Admissions Requirements
Admission to the program requires:

• A bachelor’s degree in construction management or engineering, or a baccalaureate business or non-technical degree.
• A completed application
• Official transcripts from all universities or colleges and other post-secondary educational institutions (including trade schools) attended. Potential students must supply transcripts regardless of the number of credits earned or the type of school attended. If a potential student does not list all post-secondary institutions on his or her application, and these are listed on transcripts received from other institutions, processing of the application will be delayed until the remaining transcripts have been submitted.
• GPA of 3.0 or higher
• Two letters of recommendation (professional or academic)
• Up-to-date resume
• 500 word essay on why the applicant wishes to pursue graduate studies in this program
• International Students must submit a TOEFL score indicating a minimum of 600 (paper exam) or 250 (CBT exam). For more information regarding international applicant requirements, view the International Students Admissions Information (http://drexel.edu/grad/resources/international/) page.

Additional Information
Visit the Graduate Admissions (http://www.drexel.edu/grad/programs/coe/construction-management/) website for more information about requirements and deadlines, as well as instructions for applying online.

Degree Requirements
The Master of Science in Construction Management curriculum includes a core of five required courses (15.0 credits), a concentration (24.0 credits), and 6.0 credits of culminating experience. The culminating experience includes a capstone project in construction management.

<table>
<thead>
<tr>
<th>Core Foundation Courses</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CMGT 501 Leadership in Construction</td>
<td>3.0</td>
</tr>
<tr>
<td>CMGT 505 Construction Accounting and Financial Management</td>
<td>3.0</td>
</tr>
<tr>
<td>CMGT 510 Construction Control Techniques</td>
<td>3.0</td>
</tr>
<tr>
<td>CMGT 512 Cost Estimating and Bidding Strategies</td>
<td>3.0</td>
</tr>
<tr>
<td>CMGT 515 Risk Management in Construction</td>
<td>3.0</td>
</tr>
</tbody>
</table>
CMGT 528 Construction Contract Administration 3.0

Electives 21.0

Students may select 7 elective courses from the following areas:

- CMGT 525 Applied Construction Project Management
- CMGT 530 Equipment Applications and Economy
- CMGT 532 International Construction Practices
- CMGT 535 Community Impact Analysis
- CMGT 538 Strategic Management in Construction
- CMGT 540 Schedule Impact Analysis
- CMGT 545 Sustainable Principles & Practices
- CMGT 546 Sustainable Technologies
- CMGT 547 LEED Concepts
- CMGT 548 Quality Management and Construction Performance
- CMGT 550 Productivity Analysis and Improvement
- CMGT 558 Community Sustainability
- REAL 568 Real Estate Development
- REAL 571 Advanced Real Estate Investment & Analysis
- REAL 572 Advanced Market Research & Analysis
- REAL 573 Sales & Marketing of Real Estate
- REAL 574 Real Estate Economics in Urban Markets
- REAL 575 Real Estate Finance
- REAL 576 Real Estate Valuation & Analysis
- REAL 577 Legal Issues in Real Estate Development

Culminating Experience 6.0

- CMGT 696 Capstone Project in Construction Management I
- CMGT 697 Capstone Project in Construction Management II

Total Credits 45.0

Note: Second Year Summer is less than the 4.5-credit minimum required (considered half-time status) of graduate programs to be considered financial aid eligible. As a result, aid will not be disbursed to students this term.

Sample Plan of Study

First Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credits Winter</th>
<th>Credits Spring</th>
<th>Credits Summer</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMGT 501</td>
<td>3.0 CMGT 528</td>
<td>3.0 CMGT 510</td>
<td>3.0 CMGT 515</td>
<td>3.0</td>
</tr>
<tr>
<td>CMGT 505</td>
<td>3.0 CMGT 538</td>
<td>3.0 CMGT 512</td>
<td>3.0 CMGT 540</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credits Winter</th>
<th>Credits Spring</th>
<th>Credits Summer</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMGT 525</td>
<td>3.0 CMGT 548</td>
<td>3.0 CMGT 530</td>
<td>3.0 CMGT 697</td>
<td>3.0</td>
</tr>
<tr>
<td>CMGT 532</td>
<td>3.0 CMGT 550</td>
<td>3.0 CMGT 696</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credits 45

Construction Management Faculty

Jeffrey Beard, PhD (Georgia Institute of Technology). Associate Clinical Professor. Project and Program Management; Entrepreneurship in design and construction; Integrated project delivery systems; History of engineering and construction; Sustainable design and construction.

Douglas Carney, MBA, AIA (Eastern University). Clinical Professor. Architecture; Contract management; Master planning; Site analysis; Feasibility and zoning issues; Space needs and program development; Code analysis and compliance studies; project scheduling.

Johanna Casale, PhD (Rutgers University). Assistant Teaching Professor. Engineering education, first year design, structural aspects of construction.

Charles Cook, PhD (New York University). Assistant Clinical Professor. Construction management; project management; leadership and teambuilding; oral and written communication.

Christine M. Fiori, PhD (Drexel University) Program Director. Clinical Professor. Improving the delivery of safety education in construction curriculum; Ancient construction techniques; Design and construction in developing countries; Leadership in construction; Workforce development.

Kathleen M. Short, PhD (Virginia Tech). Assistant Teaching Professor. Workforce development and women in construction; transformative safety leadership; construction education.
Cybersecurity

Major: Cybersecurity
Degree Awarded: Master of Science (MS)
Calendar Type: Quarter
Minimum Required Credits: 45.0
Co-op Option: Available for full-time, on-campus master's-level students
Classification of Instructional Programs (CIP) code: 11.1003
Standard Occupational Classification (SOC) code: 15-1122

About the Program

As a greater percentage of people worldwide use computers, there is a marked increase in cybersecurity concerns. Motivated through discussions with the National Security Agency (NSA), Drexel University's MS in Cybersecurity program prepares students with both academic and practical training to be competitive in today's rapidly changing technical landscape. The program provides deeply technical and specialized training and enables graduates to understand, adapt, and develop new techniques to confront emerging threats in cybersecurity.

Administered by the Electrical & Computer Engineering Department in the College of Engineering, this program is interdisciplinary in nature and includes courses from Drexel University's College of Computing & Informatics. Topics covered include computer networking, probability concepts, techniques for analyzing algorithms, dependable software design, reverse software engineering, intrusion detection, ethics, privacy, confidentiality, authenticity, and social networking.

The program offers multidisciplinary "research rotations" as an independent study component of the degree program and an option to participate in the Graduate Co-op Program. For more information relating to Graduate Co-op, please see the Steinbright Career Development Center's website.

Additional Information

For more information about this program, please visit the ECE Department's Cybersecurity degree page.

Admission Requirements

Applicants must satisfy general requirements for graduate admission, including a minimum 3.00 GPA (on a 4.00 scale) for the last two years of undergraduate study, as well as for any subsequent graduate work. It is preferred, but not necessary, that applicants hold a bachelor's degree in an engineering or computer science discipline. Degrees must be earned from an accredited college or university. An undergraduate degree earned abroad must be deemed equivalent to a US bachelor's.

For full-time applicants, the GRE exam is optional. Students who do not hold a degree from a US institution must take the TOEFL or IELTS exam within two years of application submission.

Additional Information

For more information on how to apply, visit Drexel's Admissions page for Cybersecurity.

Degree Requirements

The Master of Science in Cybersecurity program encompasses a minimum of 45.0 approved credit hours, chosen in accordance with the requirements listed below. A plan of study should be arranged with the departmental graduate advisors, and in consultation with the student's research advisor, if applicable.

The required core courses provide students with a theoretical foundation in the field of cybersecurity and a framework to guide the application of knowledge gained in technical electives to the practice of cybersecurity.

<table>
<thead>
<tr>
<th>Core Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>INFO 517 Principles of Cybersecurity</td>
<td>3.0</td>
</tr>
<tr>
<td>INFO 725 Information Policy and Ethics</td>
<td>3.0</td>
</tr>
<tr>
<td>SE 578 Security Engineering</td>
<td>3.0</td>
</tr>
<tr>
<td>Cybersecurity Track-Specific Technical Electives</td>
<td>27.0</td>
</tr>
<tr>
<td>Choose from lists below depending on track</td>
<td></td>
</tr>
</tbody>
</table>

Cybersecurity Non-Track Technical Electives 9.0

Total Credits 45.0
* If enrolled in the Computer Science Track, choose 3 courses (9.0 credits) from either Electrical & Computer Engineering Track or Information Systems Track Technical Electives list.
If enrolled in the Information Systems Track, choose 3 courses (9.0 credits) from either the Computer Science or Electrical & Computer Engineering Tracks.
If enrolled in the Electrical & Computer Engineering Track, choose 3 courses (9.0 credits) from either the Computer Science or Information Systems Tracks.

Computer Science Track Electives

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 500</td>
<td>Fundamentals of Databases</td>
<td>3.0</td>
</tr>
<tr>
<td>CS 501</td>
<td>Introduction to Programming</td>
<td>3.0</td>
</tr>
<tr>
<td>CS 502</td>
<td>Data Structures and Algorithms</td>
<td>3.0</td>
</tr>
<tr>
<td>CS 503</td>
<td>Systems Basics</td>
<td>3.0</td>
</tr>
<tr>
<td>CS 510</td>
<td>Introduction to Artificial Intelligence</td>
<td>3.0</td>
</tr>
<tr>
<td>CS 521</td>
<td>Data Structures and Algorithms I</td>
<td>3.0</td>
</tr>
<tr>
<td>CS 522</td>
<td>Data Structures and Algorithms II</td>
<td>3.0</td>
</tr>
<tr>
<td>CS 540</td>
<td>High Performance Computing</td>
<td>3.0</td>
</tr>
<tr>
<td>CS 543</td>
<td>Operating Systems</td>
<td>3.0</td>
</tr>
<tr>
<td>CS 544</td>
<td>Computer Networks</td>
<td>3.0</td>
</tr>
<tr>
<td>CS 550</td>
<td>Programming Languages</td>
<td>3.0</td>
</tr>
<tr>
<td>CS 551</td>
<td>Compiler Construction I</td>
<td>3.0</td>
</tr>
<tr>
<td>CS 552</td>
<td>Compiler Construction II</td>
<td>3.0</td>
</tr>
<tr>
<td>CS 575</td>
<td>Software Design</td>
<td>3.0</td>
</tr>
<tr>
<td>CS 576</td>
<td>Dependable Software Systems</td>
<td>3.0</td>
</tr>
<tr>
<td>CS 590</td>
<td>Privacy</td>
<td>3.0</td>
</tr>
<tr>
<td>CS 610</td>
<td>Advanced Artificial Intelligence</td>
<td>3.0</td>
</tr>
<tr>
<td>CS 612</td>
<td>Knowledge-based Agents</td>
<td>3.0</td>
</tr>
<tr>
<td>CS 613</td>
<td>Machine Learning</td>
<td>3.0</td>
</tr>
<tr>
<td>CS 620</td>
<td>Advanced Data Structure and Algorithms</td>
<td>3.0</td>
</tr>
<tr>
<td>CS 621</td>
<td>Approximation Algorithms</td>
<td>3.0</td>
</tr>
<tr>
<td>CS 630</td>
<td>Cognitive Systems</td>
<td>3.0</td>
</tr>
<tr>
<td>CS 643</td>
<td>Advanced Operating Systems</td>
<td>3.0</td>
</tr>
<tr>
<td>CS 645</td>
<td>Network Security</td>
<td>3.0</td>
</tr>
<tr>
<td>CS 647</td>
<td>Distributed Systems Software</td>
<td>3.0</td>
</tr>
<tr>
<td>CS 650</td>
<td>Program Generation and Optimization</td>
<td>3.0</td>
</tr>
<tr>
<td>CS 675</td>
<td>Reverse Software Engineering</td>
<td>3.0</td>
</tr>
<tr>
<td>CS 695</td>
<td>Research Rotations in Cybersecurity</td>
<td>1.0-12.0</td>
</tr>
<tr>
<td>CS 741</td>
<td>Computer Networks II</td>
<td>3.0</td>
</tr>
<tr>
<td>CS 751</td>
<td>Database Theory II</td>
<td>3.0</td>
</tr>
<tr>
<td>CS 759</td>
<td>Complexity Theory</td>
<td>3.0</td>
</tr>
<tr>
<td>CS 770</td>
<td>Topics in Artificial Intelligence</td>
<td>3.0</td>
</tr>
<tr>
<td>CS 780</td>
<td>Advanced Topics in Software Engineering</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Electrical & Computer Engineering Track Electives

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 610</td>
<td>Machine Learning & Artificial Intelligence</td>
<td>3.0</td>
</tr>
<tr>
<td>ECE 687</td>
<td>Pattern Recognition</td>
<td>3.0</td>
</tr>
<tr>
<td>ECEC 500</td>
<td>Fundamentals Of Computer Hardware</td>
<td>3.0</td>
</tr>
<tr>
<td>ECEC 501</td>
<td>Computational Principles of Representation and Reasoning</td>
<td>3.0</td>
</tr>
<tr>
<td>ECEC 502</td>
<td>Principles of Data Analysis</td>
<td>3.0</td>
</tr>
<tr>
<td>ECEC 503</td>
<td>Principles of Decision Making</td>
<td>3.0</td>
</tr>
<tr>
<td>ECEC 511</td>
<td>Combinational Circuit Design</td>
<td>3.0</td>
</tr>
<tr>
<td>ECEC 512</td>
<td>Sequential Circuit Design</td>
<td>3.0</td>
</tr>
<tr>
<td>ECEC 513</td>
<td>Design for Testability</td>
<td>3.0</td>
</tr>
<tr>
<td>ECEC 520</td>
<td>Dependable Computing</td>
<td>3.0</td>
</tr>
<tr>
<td>ECEC 531</td>
<td>Principles of Computer Networking</td>
<td>3.0</td>
</tr>
<tr>
<td>ECEC 600</td>
<td>Fundamentals of Computer Networks</td>
<td>3.0</td>
</tr>
<tr>
<td>ECEC 621</td>
<td>High Performance Computer Architecture</td>
<td>3.0</td>
</tr>
<tr>
<td>ECEC 622</td>
<td>Parallel Programming</td>
<td>3.0</td>
</tr>
<tr>
<td>ECEC 623</td>
<td>Advanced Topics in Computer Architecture</td>
<td>3.0</td>
</tr>
<tr>
<td>ECEC 632</td>
<td>Performance Analysis of Computer Networks</td>
<td>3.0</td>
</tr>
</tbody>
</table>
ECEC 633 Advanced Topics in Computer Networking 3.0
ECEC 641 Web Security I 3.0
ECEC 642 Web Security II 3.0
ECEC 643 Web Security III 3.0
ECEC 661 Digital Systems Design 3.0
ECES 511 Fundamentals of Systems I 3.0
ECES 512 Fundamentals of Systems II 3.0
ECES 513 Fundamentals of Systems III 3.0
ECES 521 Probability & Random Variables 3.0
ECES 522 Random Process & Spectral Analysis 3.0
ECES 523 Detection & Estimation Theory 3.0
ECES 558 Digital Signal Processing for Sound & Hearing 3.0
ECES 559 Processing of the Human Voice 3.0
ECES 604 Optimal Estimation & Stochastic Control 3.0
ECES 607 Estimation Theory 3.0
ECES 620 Multimedia Forensics and Security 3.0
ECES 621 Communications I 3.0
ECES 622 Communications II 3.0
ECES 623 Communications III 3.0
ECES 631 Fundamentals of Deterministic Digital Signal Processing 3.0
ECES 632 Fundamentals of Statistical Digital Signal Processing 3.0
ECES 641 Bioinformatics 3.0
ECES 642 Optimal Control 3.0
ECES 643 Digital Control Systems Analysis & Design 3.0
ECES 644 Computer Control Systems 3.0
ECES 651 Intelligent Control 3.0
ECES 682 Fundamentals of Image Processing 3.0
ECES 685 Image Reconstruction Algorithms 3.0
ECES 811 Optimization Methods for Engineering Design 3.0
ECES 812 Mathematical Program Engineering Design 3.0
ECES 813 Computer-Aided Network Design 3.0
ECES 818 Machine Learning & Adaptive Control 3.0
ECES 821 Reliable Communications & Coding I 3.0
ECES 822 Reliable Communications & Coding II 3.0
ECES 823 Reliable Communications & Coding III 3.0
ECET 501 Fundamentals of Communications Engineering 3.0
ECET 511 Physical Foundations of Telecommunications Networks 3.0
ECET 512 Wireless Systems 3.0
ECET 513 Wireless Networks 3.0
ECET 602 Information Theory and Coding 3.0
ECET 603 Optical Communications and Networks 3.0
ECET 604 Internet Laboratory 3.0

Information Track Electives

INFO 532 Software Development 3.0
INFO 540 Perspectives on Information Systems 3.0
INFO 590 Foundations of Data and Information 3.0
INFO 605 Database Management Systems 3.0
INFO 606 Advanced Database Management 3.0
INFO 607 Applied Database Technologies 3.0
INFO 624 Information Retrieval Systems 3.0
INFO 629 Applied Artificial Intelligence 3.0
INFO 633 Information Visualization 3.0
INFO 634 Data Mining 3.0
INFO 646 Information Systems Management 3.0
INFO 655 Intro to Web Programming 3.0
INFO 659 Introduction to Data Analytics 3.0
INFO 662 Metadata and Resource Description 3.0
INFO 670 Cross-platform Mobile Development 3.0
INFO 680 US Government Information 3.0
Cybersecurity technical electives are used to build a deep understanding of one or more areas of technical expertise within the field of cybersecurity. All students are required to take a minimum of 18.0 credits of cybersecurity technical electives from the graduate course offerings of the Department of Computer Science, the Department of Computing and Security Technology, and the Department of Electrical and Computer Engineering [ECE]. A list of pre-approved technical electives can be found on the ECE Department website.

** General electives are the remaining courses needed to reach the minimum credit hour requirement for the degree program. General electives can be chosen from among the graduate course offerings of the College of Computing & Informatics; the Department of Computer Science; the Department of Computing and Security Technology; the Department of Electrical and Computer Engineering, and the Department of Mathematics. In order to have courses outside of these departments and schools count towards degree completion, they must be approved by the departmental graduate advisors prior to registration for said courses.

Sample Plan of Study

<table>
<thead>
<tr>
<th>First Year</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>Winter</td>
</tr>
<tr>
<td>INFO 517</td>
<td>3.0 SE 578</td>
</tr>
<tr>
<td>Track Elective</td>
<td>3.0 Track Electives</td>
</tr>
<tr>
<td>Non-Track Elective</td>
<td>3.0 Non-Track Elective</td>
</tr>
<tr>
<td></td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>Winter</td>
</tr>
<tr>
<td>Track Electives</td>
<td>9.0 Track Electives</td>
</tr>
<tr>
<td>Non-Track Elective</td>
<td>3.0 Non-Track Elective</td>
</tr>
<tr>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Total Credits</td>
<td>45</td>
</tr>
</tbody>
</table>

Graduate Co-op/Career Opportunities

Graduate Co-op

Students may choose to participate in the Graduate Co-op Program, working on curriculum related projects. Graduate Co-op enables graduate students to alternate class terms with a six-month period of hands-on experience, gaining access to employers in their chosen industries. Whether co-op takes students throughout the United States or abroad, they are expanding their professional networks, enhancing their resumes, and bringing that experience back to the classroom and their peers.

Further information on the Graduate Co-Op Program (https://drexel.edu/scdc/co-op/graduate/) is available at the Drexel Steinbright Career Development Center. (http://www.drexel.edu/scdc/)

Career Opportunities

The program was deliberately designed to address needs of the Federal Cyber Service, the Department of Defense, and the National Security Agency. The program strengthens ties between these agencies and Drexel University and will provide professional opportunities for students pursuing this degree.

Research

Students in the MS in Cybersecurity program have opportunities to perform research-oriented coursework for academic credit. Research-oriented coursework can be divided into three categories: research rotations, master’s thesis, and independent research.

A total of 9.0 credits of research-oriented coursework may be counted towards the minimum credit hour requirement of the degree program. These credits are considered general electives.

Facilities

Drexel University and the Electrical and Computer Engineering Department are nationally recognized for a strong history of developing innovative research. Research programs in the ECE Department prepare students for careers in research and development, and aim to endow graduates with the ability to identify, analyze, and address new technical and scientific challenges. The ECE Department is well equipped with state-of-the-art facilities in each of the following ECE Research laboratories:
Research Laboratories at the ECE Department

Adaptive Signal Processing and Information Theory Research Group

The Adaptive Signal Processing and Information Theory Research Group (https://research.coe.drexel.edu/ece/aspitrg/home.html) conducts research in the area of signal processing and information theory. Our main interests are belief/expectation propagation, turbo decoding and composite adaptive system theory. We are currently doing projects on the following topics:
- Delay mitigating codes for network coded systems,
- Distributed estimation in sensor networks via expectation propagation,
- Turbo speaker identification,
- Performance and convergence of expectation propagation,
- Investigating bounds for SINR performance of autocorrelation based channel shorteners.

Applied Networking Research Lab

Applied Networking Research Lab (ANRL) projects focus on modeling and simulation as well as experimentation in wired, wireless and sensor networks. ANRL is the home of MuTANT, a Multi-Protocol Label Switched Traffic Engineering and Analysis Testbed composed of 10 high-end Cisco routers and several PC-routers, also used to study other protocols in data networks as well as automated network configuration and management. The lab also houses a sensor network testbed.

Bioimage Laboratory

Uses computer gaming hardware for enhanced and affordable 3-D visualization, along with techniques from information theory and machine learning to combine the exquisite capabilities of the human visual system with computational sensing techniques for analyzing vast quantities of image sequence data.

Data Fusion Laboratory

The Data Fusion Laboratory investigates problems in multisensory detection and estimation, with applications in robotics, digital communications, radar, and target tracking. Among the projects in progress: computationally efficient parallel distributed detection architectures, data fusion for robot navigation, modulation recognition and RF scene analysis in time-varying environments, pattern recognition in biological data sequences and large arrays, and hardware realizations of data fusion architectures for target detection and target tracking.

Drexel Network Modeling Laboratory

The Drexel Network Modeling Laboratory investigates problems in the mathematical modeling of communication networks, with specific focus on wireless ad hoc networks, wireless sensor networks, and supporting guaranteed delivery service models on best effort and multipath routed networks. Typical methodologies employed in our research include mathematical modeling, computer simulation, and performance optimization, often with the end goal of obtaining meaningful insights into network design principles and fundamental performance tradeoffs.

Drexel Power-Aware Computing Laboratory

The Power-Aware Computing Lab investigates methods to increase energy efficiency across the boundaries of circuits, architecture, and systems. Our recent accomplishments include the Sigil profiling tool, scalable modeling infrastructure for accelerator implementations, microarchitecture-aware VDD gating algorithms, an accelerator architecture for ultrasound imaging, evaluation of hardware reference counting, hardware and operating system support for power-agile computing, and memory systems for accelerator-based architectures.

Drexel University Nuclear Engineering Education Laboratory

The field of nuclear engineering encompasses a wide spectrum of occupations, including nuclear reactor design, medical imaging, homeland security, and oil exploration. The Drexel University Nuclear Engineering Education Laboratory (DUNEEL) provides fundamental hands on understanding for power plant design and radiation detection and analysis. Software based study for power plant design, as well as physical laboratory equipment for radiation detection, strengthen the underlying concepts used in nuclear engineering such that the student will comprehend and appreciate the basic concepts and terminology used in various nuclear engineering professions. Additionally, students use the laboratory to develop methods for delivering remote, live time radiation detection and analysis. The goal of DUNEEL is to prepare students for potential employment in the nuclear engineering arena.

Drexel VLSI Laboratory

The Drexel VLSI Laboratory investigates problems in the design, analysis, optimization and manufacturing of high performance (low power, high throughput) integrated circuits in contemporary CMOS and emerging technologies. Suited with industrial design tools for integrated circuits, simulation tools and measurement beds, the VLSI group is involved with digital and mixed-signal circuit design to verify the functionality of the discovered novel circuit and physical design principles. The Drexel VLSI laboratory develops design methodologies and automation tools in these areas, particularly in novel clocking techniques, featuring resonant clocking, and interconnects, featuring wireless interconnects.

Drexel Wireless Systems Laboratory
The Drexel Wireless Systems Laboratory (DWSL) contains an extensive suite of equipment for constructing, debugging, and testing prototype wireless communications systems. Major equipment within DWSL includes:

- software defined radio network testbeds for rapidly prototyping new communications and network systems,
- electromagnetic anechoic chamber and reverberation chambers for testing new wireless technologies,
- experimental cell tower for field testing new wireless technologies.

The lab is also equipped with network analyzers, high speed signal generators, oscilloscopes, and spectrum analyzers as well as several Zigbee development platforms for rapidly prototyping sensor networks. The lab offers laboratory coursework in wireless network security, collaborative intelligent radio networks, and fundamental analog and digital communication systems.

Ecological and Evolutionary Signal-processing and Informatics Laboratory

The Ecological and Evolutionary Signal-processing and Informatics Laboratory (EESI) seeks to solve problems in high-throughput genomics and engineer better solutions for biochemical applications. The lab's primary thrust is to enhance the use of high-throughput DNA sequencing technologies with pattern recognition and signal processing techniques. Applications include assessing the organism content of an environmental sample, recognizing/classifying potential and functional genes, inferring environmental factors and inter-species relationships, and inferring microbial evolutionary relationships from short-read DNA/RNA fragments. The lab also investigates higher-level biological systems such as modeling and controlling chemotaxis, the movement of cells.

Electric Power Engineering Center

This newly established facility makes possible state-of-the-art research in a wide variety of areas, ranging from detailed theoretical model study to experimental investigation in its high voltage laboratories. The mission is to advance and apply scientific and engineering knowledge associated with the generation, transmission, distribution, use, and conservation of electric power. In pursuing these goals, this center works with electric utilities, state and federal agencies, private industries, nonprofit organizations and other universities on a wide spectrum of projects. Research efforts, both theoretical and experimental, focus on the solution of those problems currently faced by the electric power industry. Advanced concepts for electric power generation are also under investigation to ensure that electric power needs will be met at the present and in the future.

Electronic Design Automation Facility

Industrial-grade electronic design automation software suite and integrated design environment for digital, analog and mixed-signal systems development. Field Programmable Gate Array (FPGA) development hardware. Most up-to-date FPGA/embedded system development hardware kits. Printed circuit board production facility. Also see Drexel VLSI Laboratory.

Microwave-Photonics Device Laboratories

The laboratory is equipped with test and measurement equipment for high-speed analog and digital electronics and fiber optic systems. The test equipment includes network analyzers from Agilent (100kHz- 1.3 GHz and 45 Mhz-40 GHz), and Anritsu (45 MHz-6 GHz); spectrum analyzers from Tektronix, HP, and Agilent with measurement capability of DC to 40 GHz and up to 90 GHz using external mixers; signal generators and communication channel modulators from HP, Rhode-Schwert, Systron Donner, and Agilent; microwave power meter and sensor heads, assortment of passive and active microwave components up to 40 GHz; data pattern generator and BER tester up to 3Gb/s; optical spectrum analyzer from Anritsu and power meters from HP: single and multimode fiber optic based optical transmitter and receiver boards covering ITU channels at data rates up to 10Gb/s; passive optical components such as isolator, filter, couplers, optical connectors and fusion splicer; LPKF milling machine for fabrication of printed circuit boards; wire-bonding and Cascade probe stations; Intercontinental test fixtures for testing of MMIC circuits and solid-state transistors; state-of-the-art microwave and electromagnetic CAD packages such as Agilent ADS, ANSYS HFSS, and COMSOL multi-physics module.

Multimedia & Information Security Laboratory

The Multimedia & Information Security Laboratory (MISL) conducts research that provides information verification and security in scenarios when an information source cannot be trusted.

The majority of MISL's research is in digital multimedia forensics. Digital multimedia forensics involves the developing mathematical techniques to identify multimedia forgeries such as falsified images and videos. This research is particularly important because widely available editing software enables multimedia forgers to create perceptually realistic forgeries. MISL performs research on anti-forensic operations designed to fool forensic techniques. By studying anti-forensics, researchers can identify and address weaknesses in existing forensic techniques as well as develop techniques capable of identifying the use of anti-forensics.

Music and Entertainment Technology Laboratory

The Music and Entertainment Technology Laboratory (MET-lab) is devoted to research in digital media technologies that will shape the future of entertainment, especially in the areas of sound and music. We employ digital signal processing and machine learning to pursue novel applications in music information retrieval, music production and processing technology, and new music interfaces. The MET-lab is also heavily involved in outreach programs for K-12 students and hosts the Summer Music Technology program, a one-week learning experience for high school students. Lab facilities
include a sound isolation booth for audio and music recording, a digital audio workstation running ProTools, two large multi-touch display interfaces of our own design, and a small computing cluster for distributed processing.

NanoPhotonics+ Lab

Our research is primarily in the area of nanophotonics with a focus on the nanoscale interaction of light with matter. Interests include: liquid crystal/polymer composites for gratings, lenses and HOEs; liquid crystal interactions with surfaces and in confined nanospaces; alternative energy generation through novel photon interactions; ink-jet printed conducting materials for RF and photonic applications; and the creation and development of smart textiles technologies including soft interconnects, sensors, and wireless implementations.

Opto-Electro-Mechanical Laboratory

This lab concentrates on the system integration on optics, electronics, and mechanical components and systems, for applications in imaging, communication, and biomedical research. Research areas include: Programmable Imaging with Optical Micro-electrical-mechanical systems (MEMS), in which microscopic mirrors are used to image light into a single photodetector; Pre-Cancerous Detection using White Light Spectroscopy, which performs a cellular size analysis of nuclei in tissue; Free-space Optical Communication using Space Time Coding, which consists of diffused light for computer-to-computer communications, and also tiny lasers and detectors for chip-to-chip communication; Magnetic Particle Locomotion, which showed that particles could swim in a uniform field; and Transparent Antennas using Polymer, which enables antennas to be printed through an ink-jet printer.

Plasma and Magnetics Laboratory

Research is focused on applications of electrical and magnetic technologies to biology and medicine. This includes the subjects of non-thermal atmospheric pressure plasma for medicine, magnetic manipulation of particles for drug delivery and bio-separation, development of miniature NMR sensors for cellular imaging and carbon nanotube cellular probes.

Power Electronics Research Laboratory

The Power Electronics Research Laboratory (PERL) is involved in circuit and design simulation, device modeling and simulation, and experimental testing and fabrication of power electronic circuits. The research and development activities include electrical terminations, power quality, solar photovoltaic systems, GTO modeling, protection and relay coordination, and solid-state circuit breakers. The analysis tools include EMPT, SPICE, and others, which have been modified to incorporate models of such controllable solid-state switches as SCRs, GTOs, and MOSFETs. These programs have a wide variety and range of modeling capabilities used to model electromagnetics and electromechanical transients ranging from microseconds to seconds in duration. The PERL is a fully equipped laboratory with 42 kVAC and 70 kVDC power sources and data acquisition systems, which have the ability to display and store data for detailed analysis. Some of the equipment available is a distribution and HV transformer and three phase rectifiers for power sources and digital oscilloscopes for data measuring and experimental analysis. Some of the recent studies performed by the PERL include static VAR compensators, power quality of motor controllers, solid-state circuit breakers, and power device modeling which have been supported by PECO, GE, Gould, and EPRI.

Privacy, Security and Automation Lab

Drexel University's Privacy, Security, and Automation Laboratory (PSAL) researches on topics at the intersection between artificial intelligence, privacy and security, and human-computer interaction.

RE Touch Lab

The RE Touch Lab is investigating the perceptual and mechanical basis of active touch perception, or haptics, and the development of new technologies for stimulating the sense of touch, allowing people to touch, feel, and interact with digital content as seamlessly as we do with objects in the real world.

We study the scientific foundations of haptic perception and action, and the neuroscientific and biomechanical basis of touch, with a long-term goal of uncovering the fundamental perceptual and mechanical computations that enable haptic interaction. We also create new technologies for rendering artificial touch sensations that simulate those that are experienced when interacting with real objects, inspired by new findings on haptic perception.

Testbed for Power-Performance Management of Enterprise Computing Systems

This computing testbed is used to validate techniques and algorithms aimed at managing the performance and power consumption of enterprise computing systems. The testbed comprises a rack of Dell 2950 and Dell 1950 PowerEdge servers, as well as assorted desktop machines, networked via a gigabit switch. Virtualization of this cluster is enabled by VMWare's ESX Server running the Linux RedHat kernel. It also comprises of a rack of ten Apple Xserve machines networked via a gigabit switch. These servers run the OS X Leopard operating systems and have access to a RAID with TBs of total disk capacity.

Cybersecurity Faculty

Kapil Dandekar, PhD (University of Texas-Austin) Director of the Drexel Wireless Systems Laboratory (DWSL); Associate Dean of Research, College of Engineering. Professor. Cellular/mobile communications and wireless LAN; smart antenna/MIMO for wireless communications; applied computational electromagnetics; microwave antenna and receiver development; free space optical communication; ultrasonic communication; sensor networks for homeland security; ultrawideband communication.
Constantine Katsinis, PhD (University of Rhode Island). Teaching Professor. High-performance computer networks, parallel computer architectures with sustained teraflops performance, computer security, image processing.

Steven Weber, PhD (University of Texas-Austin) Department Head. Professor. Mathematical modeling of computer and communication networks, specifically streaming multimedia and ad hoc networks.

Christopher C. Yang, PhD (University of Arizona, Tucson). Professor. Web search and mining, security informatics, knowledge management, social media analytics, cross-lingual information retrieval, text summarization, multimedia retrieval, information visualization, information sharing and privacy, artificial intelligence, digital library, and electronic commerce.

Electrical Engineering

Major: Electrical Engineering
Degree Awarded: Master of Science (MS)
Calendar Type: Quarter
Minimum Required Credits: 45.0
Co-op Option: Available for full-time, on-campus master’s-level students
Classification of Instructional Programs (CIP) code: 14.1001
Standard Occupational Classification (SOC) code: 17-2071

About the Program

The program in electrical engineering prepares students for careers in research and development, and aims to endow graduates with the ability to identify, analyze and address new technical and scientific challenges. At present, the department offers graduate coursework in six general areas: (1) computer engineering; (2) control, robotics and intelligent systems; (3) electrophysics; (4) image and signal processing and interpretation; (5) power engineering and energy; and (6) telecommunications and networking.

A student's plan of study must contain a selection of courses from the department's offerings and may include appropriate graduate elective courses from other engineering departments or from physics or mathematics. Further information can be obtained from the department website or from the graduate advisor.

Students are also encouraged to engage in thesis research. The combined thesis and research cannot exceed 9.0 credits. The MS program is organized so that a student may complete the degree requirements in less than 2 years of full-time study or 2-3 years of part-time study.

Students within the Master of Science in Electrical Engineering are eligible to take part in the Graduate Co-op Program, which combines classroom coursework with a 6-month, full-time work experience. For more information, visit the Steinbright Career Development Center's website (http://www.drexel.edu/scdc/co-op/graduate/).

Additional Information

For more information, please visit the Electrical and Computer Engineering Department (https://drexel.edu/engineering/academics/departments/electrical-computer-engineering/) website.

Admission Requirements

Applicants must satisfy general requirements for graduate admission, including a minimum 3.0 GPA (on a 4.0 scale) for the last two years of undergraduate studies, as well as for any subsequent graduate work, and hold a bachelor's degree in electrical engineering, computer engineering, or the equivalent from an accredited college or university. A degree in science (physics, mathematics, computer science, etc.) is also acceptable. Applicants with degrees in sciences may be required to take a number of undergraduate engineering courses. An undergraduate degree earned abroad must be deemed equivalent to a US bachelor's.

Applicants for full-time MS programs must take the GRE general test. Students whose native language is not English and who do not hold a degree from a US institution must take the TOEFL within two years before application.

For additional information on how to apply, visit Drexel's Admissions page for Electrical Engineering (http://www.drexel.edu/grad/programs/coe/electrical-engineering/).

Degree Requirements

The Master of Science in Electrical Engineering curriculum encompasses 45.0 or 48.0 (with the Graduate Co-op option) approved credit hours, chosen in accordance with the following requirements and a plan of study arranged with the departmental graduate advisor in consultation with the student's research advisor, if applicable. Before the end of the first quarter in the Department of Electrical and Computer Engineering, for a full-time student, or by the end of the first year for a part-time student, said plan of study must be filed and approved with the departmental graduate advisor.

A total of at least 30.0 credit hours must be taken from among the graduate course offerings of the Department of Electrical and Computer Engineering. These credits must be taken at Drexel University. No transfer credit may be used to fulfill these requirements, regardless of content equivalency.
The remaining courses needed to reach the minimum credit hour requirement for the degree program are considered elective courses. Elective courses can be chosen from among the graduate course offerings of the Department of Electrical and Computer Engineering; other departments within the College of Engineering; the School of Biomedical Science, Engineering and Health Systems; the Department of Mathematics; the Department of Physics; the Department of Chemistry and the Department of Biology. In order to have courses outside of these departments and schools count towards degree completion, they must be approved by the departmental graduate advisors prior to registration for said courses.

Please note that ECEC 500 Fundamentals of Computer Hardware and ECEC 600 Fundamentals of Computer Networks do not count toward the credit requirements to complete the MS in Electrical Engineering degree program.

Required Courses

<table>
<thead>
<tr>
<th>Course Description</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical Engineering (ECEE, ECEP, ECES, ECET) Courses at 500-900 level</td>
<td>21.0</td>
</tr>
<tr>
<td>General Electrical and Computer Engineering (ECE, ECEC, ECEE, ECEP, ECES, ECET) Courses at 500-900 level</td>
<td>9.0</td>
</tr>
<tr>
<td>Elective Courses</td>
<td>15.0</td>
</tr>
<tr>
<td>Total Credits</td>
<td>45.0</td>
</tr>
</tbody>
</table>

* 500-900 level courses in the following areas: AE, BIO, BMES, CHE, CHEM, CIVE, CMGT, CS, ECE, ECEC, ECEE, ECEP, ECES, ECET, EGMT, ENGR, ENVE, ET, MATE, MATH, MEM, OPR, PHYS, PROJ, PRMT, SYSE

Options for Degree Fulfillment

Although not required, students are encouraged to complete a Master’s Thesis as part of the MS studies. Those students who choose the thesis option may count up to 9.0 research/thesis credits as part of their required credit hour requirements.

Students may choose to participate in the Graduate Co-op Program, where 6.0 credit hours can be earned for a six month cooperative education experience in industry, working on curriculum related projects. The total number of required credit hours is increased to 48.0 for those students who choose to pursue the Graduate Co-op option. This change represents an increase in non-departmental required credit hours to a total of 18.0 credit hours, 6.0 of which are earned from the cooperative education experience.

Additional Information

For more information on curricular requirements, visit the Department of Electrical and Computer Engineering’ (http://www.ece.drexel.edu/)s website.

Sample Plan of Study

First Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credits</th>
<th>Winter</th>
<th>Credits</th>
<th>Spring</th>
<th>Credits</th>
<th>Summer</th>
<th>Credits</th>
<th>Total Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE Courses</td>
<td>6.0</td>
<td>EE Courses</td>
<td>6.0</td>
<td>EE Course</td>
<td>3.0</td>
<td>VACATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td>3.0</td>
<td>Elective</td>
<td>3.0</td>
<td>Electives</td>
<td></td>
<td>6.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>0</td>
<td>Total Credits 45</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credits</th>
<th>Winter</th>
<th>Credits</th>
<th>Credits</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE Course</td>
<td>3.0</td>
<td>EE Course</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General ECE Courses</td>
<td>6.0</td>
<td>Elective</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General ECE Course</td>
<td></td>
<td></td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td>Total Credits 45</td>
</tr>
</tbody>
</table>

Accelerated Degree

Bachelor’s/Master’s Accelerated Degree Program

The Department of Electrical and Computer Engineering offers outstanding students the opportunity to receive two diplomas (BS and MS) at the same time. The program requires five (5) years to complete. Participants, who are chosen from the best undergraduates students, work with a faculty member on a research project and follow a study plan that includes selected graduate classes. This program prepares individuals for careers in research and development; many of its past graduates continued their studies toward a PhD.

Facilities

Drexel University and the Electrical and Computer Engineering Department are nationally recognized for a strong history of developing innovative research. Research programs in the ECE Department prepare students for careers in research and development, and aim to endow graduates with the ability to identify, analyze, and address new technical and scientific challenges. The ECE Department is well equipped with state-of-the-art facilities in each of the following ECE Research laboratories:
Research Laboratories at the ECE Department

Adaptive Signal Processing and Information Theory Research Group

The Adaptive Signal Processing and Information Theory Research Group conducts research in the area of signal processing and information theory. Our main interests are belief/expectation propagation, turbo decoding and composite adaptive system theory. We are currently doing projects on the following topics:

• Delay mitigating codes for network coded systems
• Distributed estimation in sensor networks via expectation propagation
• Turbo speaker identification
• Performance and convergence of expectation propagation
• Investigating bounds for SINR performance of autocorrelation based channel shorteners

Applied Networking Research Lab

Applied Networking Research Lab (ANRL) projects focus on modeling and simulation as well as experimentation in wired, wireless and sensor networks. ANRL is the home of MuTANT, a Multi-Protocol Label Switched Traffic Engineering and Analysis Testbed composed of 10 high-end Cisco routers and several PC-routers, also used to study other protocols in data networks as well as automated network configuration and management. The lab also houses a sensor network testbed.

Bioimage Laboratory

Uses computer gaming hardware for enhanced and affordable 3-D visualization, along with techniques from information theory and machine learning to combine the exquisite capabilities of the human visual system with computational sensing techniques for analyzing vast quantities of image sequence data.

Data Fusion Laboratory

The Data Fusion Laboratory investigates problems in multisensory detection and estimation, with applications in robotics, digital communications, radar, and target tracking. Among the projects in progress: computationally efficient parallel distributed detection architectures, data fusion for robot navigation, modulation recognition and RF scene analysis in time-varying environments, pattern recognition in biological data sequences and large arrays, and hardware realizations of data fusion architectures for target detection and target tracking.

Drexel Network Modeling Laboratory

The Drexel Network Modeling Laboratory investigates problems in the mathematical modeling of communication networks, with specific focus on wireless ad hoc networks, wireless sensor networks, and supporting guaranteed delivery service models on best effort and multipath routed networks. Typical methodologies employed in our research include mathematical modeling, computer simulation, and performance optimization, often with the end goal of obtaining meaningful insights into network design principles and fundamental performance tradeoffs.

Drexel Power-Aware Computing Laboratory

The Power-Aware Computing Lab investigates methods to increase energy efficiency across the boundaries of circuits, architecture, and systems. Our recent accomplishments include the Sigil profiling tool, scalable modeling infrastructure for accelerator implementations, microarchitecture-aware VDD gating algorithms, an accelerator architecture for ultrasound imaging, evaluation of hardware reference counting, hardware and operating system support for power-agile computing, and memory systems for accelerator-based architectures.

Drexel University Nuclear Engineering Education Laboratory

The field of nuclear engineering encompasses a wide spectrum of occupations, including nuclear reactor design, medical imaging, homeland security, and oil exploration. The Drexel University Nuclear Engineering Education Laboratory (DUNEEL) provides fundamental hands on understanding for power plant design and radiation detection and analysis. Software based study for power plant design, as well as physical laboratory equipment for radiation detection, strengthen the underlying concepts used in nuclear engineering such that the student will comprehend and appreciate the basic concepts and terminology used in various nuclear engineering professions. Additionally, students use the laboratory to develop methods for delivering remote, live time radiation detection and analysis. The goal of DUNEEL is to prepare students for potential employment in the nuclear engineering arena.

Drexel VLSI Laboratory

The Drexel VLSI Laboratory investigates problems in the design, analysis, optimization and manufacturing of high performance (low power, high throughput) integrated circuits in contemporary CMOS and emerging technologies. Suited with industrial design tools for integrated circuits, simulation tools and measurement beds, the VLSI group is involved with digital and mixed-signal circuit design to verify the functionality of the discovered novel
The research conducted at MISL is part of a new area, known as multimedia forensics, which lies at the intersection of many areas in machine learning and artificial intelligence, signal processing, image and video processing, game theory, etc. Our algorithms work by identifying or learning visually imperceptible traces left in images and videos by processing operations. We use these traces to detect editing or forgery as well as to link an image or video back to the camera that captured it. We also perform research on anti-forensic operations designed to fool forensic techniques. By studying anti-imperceptible traces left in images and videos by processing operations, we can detect editing or forgery as well as link an image or video back to the camera that captured it. We also perform research on anti-forensic operations designed to fool forensic techniques.

Drexel Wireless Systems Laboratory

The Drexel Wireless Systems Laboratory (DWSL) contains an extensive suite of equipment for constructing, debugging, and testing prototype wireless communications systems. Major equipment within DWSL includes:

- software defined radio network testbeds for rapidly prototyping new communications and network systems,
- electromagnetic anechoic chamber and reverberation chambers for testing new wireless technologies,
- experimental cell tower for field testing new wireless technologies.

The lab is also equipped with network analyzers, high speed signal generators, oscilloscopes, and spectrum analyzers as well as several Zigbee development platforms for rapidly prototyping sensor networks. The lab offers laboratory coursework in wireless network security, collaborative intelligent radio networks, and fundamental analog and digital communication systems.

Ecological and Evolutionary Signal-processing and Informatics Laboratory

The Ecological and Evolutionary Signal-processing and Informatics Laboratory (EESI) seeks to solve problems in high-throughput genomics and engineer better solutions for biochemical applications. The lab’s primary thrust is to enhance the use of high-throughput DNA sequencing technologies with pattern recognition and signal processing techniques. Applications include assessing the organism content of an environmental sample, recognizing/classifying potential and functional genes, inferring environmental factors and inter-species relationships, and inferring microbial evolutionary relationships from short-read DNA/RNA fragments. The lab also investigates higher-level biological systems such as modeling and controlling chemotaxis, the movement of cells.

Electric Power Engineering Center

This newly established facility makes possible state-of-the-art research in a wide variety of areas, ranging from detailed theoretical model study to experimental investigation in its high voltage laboratories. The mission is to advance and apply scientific and engineering knowledge associated with the generation, transmission, distribution, use, and conservation of electric power. In pursuing these goals, this center works with electric utilities, state and federal agencies, private industries, nonprofit organizations and other universities on a wide spectrum of projects. Research efforts, both theoretical and experimental, focus on the solution of those problems currently faced by the electric power industry. Advanced concepts for electric power generation are also under investigation to ensure that electric power needs will be met at the present and in the future.

Electronic Design Automation Facility

Industrial-grade electronic design automation software suite and integrated design environment for digital, analog and mixed-signal systems development. Field Programmable Gate Array (FPGA) development hardware. Most up-to-date FPGA/embedded system development hardware kits. Printed circuit board production facility. Also see Drexel VLSI Laboratory.

Microwave-Photonics Device Laboratories

The laboratory is equipped with test and measurement equipment for high-speed analog and digital electronics and fiber optic systems. The test equipment includes network analyzers from Agilent (100kHz-1.3 GHz and 45 Mhz-40 GHz), and Anritsu (45 MHz-6 GHz); spectrum analyzers from Tektronix, HP, and Agilent with measurement capability of DC to 40 GHz and up to 90 GHz using external mixers; signal generators and communication channel modulators from HP, Rhode-Schwarz, Systron Donner, and Agilent; microwave power meter and sensor heads, assortment of passive and active microwave components up to 40 GHz; data pattern generator and BER tester up to 3Gb/s; optical spectrum analyzer from Anritsu and power meters from HP; single and multimode fiber optic based optical transmitter and receiver boards covering ITU channels at data rates up to 10Gb/s; passive optical components such as isolator, filter, couplers, optical connectors and fusion splicer; LPKF milling machine for fabrication of printed circuit boards; wire-bonding and Cascade probe stations; Intertional test fixtures for testing of MMIC circuits and solid-state transistors; state-of-the-art microwave and electromagnetic CAD packages such as Agilent ADS, ANSYS HFSS, and COMSOL multi-physics module.

Multimedia & Information Security Lab [MISL]

The Multimedia and Information Security Lab (MISL) develops algorithms to detect fake images and videos, along with algorithms to determine the true source an image or video. This research is particularly important because widely available editing software enables multimedia forgers to create perceptually realistic forgeries. Our goal at MISL, is to conduct research that provides information verification and security in scenarios when an information source cannot be trusted.

The research conducted at MISL is part of a new area, known as multimedia forensics, which lies at the intersection of many areas in machine learning and artificial intelligence, signal processing, image and video processing, game theory, etc. Our algorithms work by identifying or learning visually imperceptible traces left in images and videos by processing operations. We use these traces to detect editing or forgery as well as to link an image or video back to the camera that captured it. We also perform research on anti-forensic operations designed to fool forensic techniques. By studying anti-forensics, researchers can identify and address weaknesses in existing forensic techniques as well as develop techniques capable of identifying the use of anti-forensics.
Music and Entertainment Technology Laboratory

The Music and Entertainment Technology Laboratory (MET-lab) is devoted to research in digital media technologies that will shape the future of entertainment, especially in the areas of sound and music. We employ digital signal processing and machine learning to pursue novel applications in music information retrieval, music production and processing technology, and new music interfaces. The MET-lab is also heavily involved in outreach programs for K-12 students and hosts the Summer Music Technology program, a one-week learning experience for high school students. Lab facilities include a sound isolation booth for audio and music recording, a digital audio workstation running ProTools, two large multi-touch display interfaces of our own design, and a small computing cluster for distributed processing.

NanoPhotonics+ Lab

Our research is primarily in the area of nanophotonics with a focus on the nanoscale interaction of light with matter. Interests include: liquid crystal/polymer composites for gratings, lenses and HOEs; liquid crystal interactions with surfaces and in confined nanospaces; alternative energy generation through novel photon interactions; ink-jet printed conducting materials for RF and photonic applications; and the creation and development of smart textiles technologies including soft interconnects, sensors, and wireless implementations.

Opto-Electro-Mechanical Laboratory

This lab concentrates on the system integration on optics, electronics, and mechanical components and systems, for applications in imaging, communication, and biomedical research. Research areas include: Programmable Imaging with Optical Micro-electrical-mechanical systems (MEMS), in which microscopic mirrors are used to image light into a single photodetector; Pre-Cancerous Detection using White Light Spectroscopy, which performs a cellular size analysis of nuclei in tissue; Free-space Optical Communication using Space Time Coding, which consists of diffused light for computer-to-computer communications, and also tiny lasers and detectors for chip-to-chip communication; Magnetic Particle Locomotion, which showed that particles could swim in a uniform field; and Transparent Antennas using Polymer, which enables antennas to be printed through an ink-jet printer.

Plasma and Magnetics Laboratory

Research is focused on applications of electrical and magnetic technologies to biology and medicine. This includes the subjects of non-thermal atmospheric pressure plasma for medicine, magnetic manipulation of particles for drug delivery and bio-separation, development of miniature NMR sensors for cellular imaging and carbon nanotube cellular probes.

Power Electronics Research Laboratory

The Power Electronics Research Laboratory (PERL) is involved in circuit and design simulation, device modeling and simulation, and experimental testing and fabrication of power electronic circuits. The research and development activities include electrical terminations, power quality, solar photovoltaic systems, GTO modeling, protection and relay coordination, and solid-state circuit breakers. The analysis tools include EMPT, SPICE, and others, which have been modified to incorporate models of such controllable solid-state switches as SCRs, GTOs, and MOSFETs. These programs have a wide variety and range of modeling capabilities used to model electromagnetics and electromechanical transients ranging from microseconds to seconds in duration. The PERL is a fully equipped laboratory with 42 kVA AC and 70 kVA DC power sources and data acquisition systems, which have the ability to display and store data for detailed analysis. Some of the equipment available is a distribution and HV transformer and three phase rectifiers for power sources and digital oscilloscopes for data measuring and experimental analysis. Some of the recent studies performed by the PERL include static VAR compensators, power quality of motor controllers, solid-state circuit breakers, and power device modeling which have been supported by PECO, GE, Gould, and EPRI.

RE Touch Lab

The RE Touch Lab is investigating the perceptual and mechanical basis of active touch perception, or haptics, and the development of new technologies for stimulating the sense of touch, allowing people to touch, feel, and interact with digital content as seamlessly as we do with objects in the real world. We study the scientific foundations of haptic perception and action, and the neuroscientific and biomechanical basis of touch, with a long-term goal of uncovering the fundamental perceptual and mechanical computations that enable haptic interaction. We also create new technologies for rendering artificial touch sensations that simulate those that are experienced when interacting with real objects, inspired by new findings on haptic perception.

Testbed for Power-Performance Management of Enterprise Computing Systems

This computing testbed is used to validate techniques and algorithms aimed at managing the performance and power consumption of enterprise computing systems. The testbed comprises a rack of Dell 2950 and Dell 1950 PowerEdge servers, as well as assorted desktop machines, networked via a gigabit switch. Virtualization of this cluster is enabled by VMWare’s ESX Server running the Linux RedHat kernel. It also comprises of a rack of ten Apple Xserve machines networked via a gigabit switch. These servers run the OS X Leopard operating systems and have access to a RAID with TBs of total disk capacity.

Electrical Engineering Faculty

Tom Chmielewski, PhD (Drexel University). Teaching Professor. Modeling and simulation of electro-mechanical systems; optimal, adaptive and non-linear control; DC motor control; system identification; kalman filters (smoothing algorithms, tracking); image processing; robot design; biometric technology and design of embedded systems for control applications utilizing MATLAB and SIMULINK.
Fernand Cohen, PhD (Brown University). Professor. Surface modeling; tissue characterization and modeling; face modeling; recognition and tracking.

Andrew Cohen, PhD (Rensselaer Polytechnic Institute). Associate Professor. Image processing; multi-target tracking; statistical pattern recognition and machine learning; algorithmic information theory; 5-D visualization

Kapil Dandekar, PhD (University of Texas-Austin) Director of the Drexel Wireless Systems Laboratory (DWSL); Associate Dean of Research, College of Engineering. Professor. Cellular/mobile communications and wireless LAN; smart antenna/MIMO for wireless communications; applied computational electromagnetics; microwave antenna and receiver development; free space optical communication; ultrasonic communication; sensor networks for homeland security; ultrawideband communication.

Afshin Daryoush, ScD (Drexel University). Professor. Digital and microwave photonics; nonlinear microwave circuits; RFIC; medical imaging.

Anup Das, PhD (Universit of Singapore). Assistant Professor. Design of algorithms for neuromorphic computing, particularly using spiking neural networks, dataflow-based design of neuromorphic computing system, design of scalable computing system; hardware-software co-design and management, and thermal and power management of many-core embedded systems

Bruce A. Eisenstein, PhD (University of Pennsylvania). Arthur J. Rowland Professor of Electrical and Computer Engineering. Pattern recognition; estimation; decision theory.

Adam K. Fontecchio, PhD (Brown University) Director, Center for the Advancement of STEM Teaching and Learning Excellence (CASTLE). Professor. Electro-optics; remote sensing; active optical elements; liquid crystal devices.

Gary Friedman, PhD (University of Maryland-College Park) Associate Department Head for Graduate Affairs. Professor. Biological and biomedical applications of nanoscale magnetic systems.

Allon Guez, PhD (University of Florida). Professor. Intelligent control systems; robotics, biomedical, automation and manufacturing; business systems engineering.

Leonid Hrebien, PhD (Drexel University). Professor. Tissue excitability; acceleration effects on physiology; bioinformatics.

Nagarajan Kandasamy, PhD (University of Michigan) Associate Department Head for Undergraduate Affairs. Associate Professor. Embedded systems, self-managing systems, reliable and fault-tolerant computing, distributed systems, computer architecture, and testing and verification of digital systems.

Youngmoo Kim, PhD (MIT) Director, Expressive and Creative Interactive Technologies (ExCITe) Center. Professor. Audio and music signal processing, voice analysis and synthesis, music information retrieval, machine learning.

Fei Lu, PhD (University of Michigan). Assistant Professor. Power electronics; wireless power transfer technology for the high-power electric vehicles and the low-power electronic devices.

Karen Miu, PhD (Cornell University). Professor. Power systems; distribution networks; distribution automation; optimization; system analysis.

Bahram Nabet, PhD (University of Washington). Professor. Optoelectronics; fabrication and modeling; fiber optic devices; nanoelectronics; nanowires.

Prawat Nagvajara, PhD (Boston University). Associate Professor. System on a chip; embedded systems; power grid computation; testing of computer hardware; fault-tolerant computing; VLSI systems; error control coding.

Dagmar Niebur, PhD (Swiss Federal Institute of Technology). Associate Professor. Intelligent systems; dynamical systems; power system monitoring and control.

Christopher Peters, PhD (University of Michigan). Teaching Professor. Nuclear reactor design; ionizing radiation detection; nuclear forensics; power plant reliability and risk analysis; naval/marine power and propulsion; directed energy/high power microwaves; nonstationary signal processing; radar; electronic survivability/susceptibility to harsh environments; electronic warfare.

Gail L. Rosen, PhD (Georgia Institute of Technology). Associate Professor. Signal processing, signal processing for biological analysis and modeling, bio-inspired designs, source localization and tracking.

Ioannis Savvidis, PhD (University of Rochester). Associate Professor. Analysis, modeling, and design methodologies for high performance digital and mixed-signal integrated circuits; Emerging integrated circuit technologies; Electrical and thermal modeling and characterization, signal and power integrity, and power and clock delivery for 3-D IC technologies.

Kevin J. Scoles, PhD (Dartmouth College) Associate Dean for Undergraduate Affairs. Associate Professor. Microelectronics; electric vehicles; solar energy; biomedical electronics.

Harish Sethu, PhD (Lehigh University). Associate Professor. Protocols, architectures and algorithms in computer networks; computer security; mobile ad hoc networks; large-scale complex adaptive networks and systems.
James Shackleford, PhD (Drexel University). Associate Professor. Medical image processing, high performance computing, embedded systems, computer vision, machine learning

P. Mohana Shankar, PhD (Indian Institute of Technology) Allen Rothwarf Professor of Electrical and Computer Engineering. Professor. Wireless communications; biomedical ultrasounds; fiberoptic bio-sensors.

Jonathan E. Spanier, PhD (Columbia University) Department Head, Mechanical Engineering and Mechanics. Professor. Light-matter interactions in electronic materials, including ferroelectric semiconductors, complex oxide thin film science; laser spectroscopy, including Raman scattering.

Matthew Stamm, PhD (University of Maryland, College Park). Associate Professor. Information Security; multimedia forensics and anti-forensics; information verification; adversarial dynamics; signal processing

Baris Taskin, PhD (University of Pittsburgh). Professor. Very large-scall integration (VLSI) systems, computer architecture, circuits and systems, electronic design automation (EDA), energy efficient computing.

John Walsh, PhD (Cornell University). Associate Professor. Bounding the region of entropic vectors and its implications for the limits of communication networks, big data distributed storage systems, and graphical model based machine learning; efficient computation and analysis of rate regions for network coding and distributed storage; code construction, polyhedral computation, hierarchy, and symmetry

Steven Weber, PhD (University of Texas-Austin) Department Head. Professor. Mathematical modeling of computer and communication networks, specifically streaming multimedia and ad hoc networks.

Jaudelice de Oliveira, PhD (Georgia Institute of Technology). Associate Professor. Software-defined networking; social and economic networks; network security; design and analysis of protocols, algorithms and architectures in computer networks, particularly solutions for the Internet of Things

Emeritus Faculty
Eli Fromm, PhD (Jefferson Medical College). Professor Emeritus. Engineering education; academic research policy; bioinstrumentation; physiologic systems.

Electrical Engineering PhD
Major: Electrical Engineering
Degree Awarded: Doctor of Philosophy (PhD)
Calendar Type: Quarter
Minimum Required Credits: 90.0
Co-op Option: None
Classification of Instructional Programs (CIP) code: 14.1001
Standard Occupational Classification (SOC) code: 17-2071

About the Program
The program in electrical engineering prepares students for careers in research and development, and aims to endow graduates with the ability to identify, analyze and address new technical and scientific challenges. At present, the department offers graduate coursework in six general areas: (1) computer engineering; (2) control, robotics and intelligent systems; (3) electrophysics; (4) image and signal processing and interpretation; (5) power engineering and energy; and (6) telecommunications and networking.

A student's plan of study must contain a selection of courses from the department's offerings and may include appropriate graduate elective courses from other engineering departments or from physics or mathematics. Further information can be obtained from the department website or from the graduate advisor.

Students are also encouraged to engage in thesis research. The combined thesis and research cannot exceed 9.0 credits.

Additional Information
For more information, please visit the Electrical and Computer Engineering Department (https://drexel.edu/engineering/academics/departments/electrical-computer-engineering/) website.

Admission Requirements
Applicants must satisfy general requirements for graduate admission, including a minimum 3.0 GPA (on a 4.0 scale) for the last two years of undergraduate studies, as well as for any subsequent graduate work, and hold a bachelor's degree in electrical engineering, computer engineering, or the equivalent from an accredited college or university. A degree in science (physics, mathematics, computer science, etc.) is also acceptable.
Applicants with degrees in sciences may be required to take a number of undergraduate engineering courses. An undergraduate degree earned abroad must be deemed equivalent to a US bachelor’s.

Applicants for full-time PhD programs must take the GRE general test. Students whose native language is not English and who do not hold a degree from a US institution must take the TOEFL within two years before application.

For additional information on how to apply, visit Drexel’s Admissions page for Electrical Engineering (http://www.drexel.edu/grad/programs/coe/electrical-engineering/).

Degree Requirements

General Requirements - make changes

The following general requirements must be satisfied in order to complete the PhD in Electrical Engineering:

- 90.0 credit hours total
- candidacy examination
- research proposal
- dissertation defense

Students entering with a master’s degree in electrical or computer engineering or a related field will be considered a post-masters PhD student and will only be required to complete a total of 45.0 credit hours, in accordance with University policy.

Curriculum

Appropriate coursework is chosen in consultation with the student’s research advisor. A plan of study must be developed by the student to encompass the total number of required credit hours. Both the departmental graduate advisor and the student’s research advisor must approve this plan.

Candidacy Examination

The candidacy examination explores the depth of understanding of the student in his/her specialty area. The student is expected to be familiar with, and be able to use, the contemporary tools and techniques of the field and to demonstrate familiarity with the principal results and key findings.

The student, in consultation with his/her research advisor, will declare a principal technical area for the examination. The examination includes the following three parts:

- A self-study of three papers from the archival literature in the student’s stated technical area, chosen by the committee in consultation with the student.
- A written report (15 pages or less) on the papers, describing their objectives, key questions and hypotheses, methodology, main results and conclusions. Moreover, the student must show in an appendix independent work he/she has done on at least one of the papers – such as providing a full derivation of a result or showing meaningful examples, simulations or applications.
- An oral examination which takes the following format:
 - A short description of the student’s principal area of interest (5 minutes, by student).
 - A review of the self-study papers and report appendix (25-30 minutes, by student).
 - Questions and answers on the report, the appendix and directly related background (40-100 minutes, student and committee).

In most cases, the work produced during the candidacy examination will be a principal reference for the student’s PhD dissertation; however, this is not a requirement.

Research Proposal

After having attained the status of PhD Candidate, each student must present a research proposal to a committee of faculty and industry members, chosen with his/her research advisor, who are knowledgeable in the specific area of research. This proposal should outline the specific intended subject of study, i.e., it should present a problem statement, pertinent background, methods of study to be employed, expected difficulties and uncertainties and the anticipated form, substance and significance of the results.

The purpose of this presentation is to verify suitability of the dissertation topic and the candidate’s approach, and to obtain the advice and guidance of oversight of mature, experienced investigators. It is not to be construed as an examination, though approval by the committee is required before extensive work is undertaken. The thesis proposal presentation must be open to all; announcements regarding the proposal presentation must be made in advance.

The thesis advisory committee will have the sole responsibility of making any recommendations regarding the research proposal. It is strongly recommended that the proposal presentation be given as soon as possible after the successful completion of the candidacy examination.
Dissertation Defense

Dissertation Defense procedures are described in the Graduate College of Drexel University (http://www.drexel.edu/graduatecollege/) policies regarding Doctor of Philosophy Program Requirements. The student must be a PhD candidate for at least one year before he/she can defend his/her doctoral thesis.

Program Requirements

Post-Bachelor's PhD Student

ECE 997 Dissertation Research 9.0
or ECE 998 Ph.D. Dissertation

Students must complete 81.0 graduate credits (500+ level) from approved College of Engineering departments *

Total Credits 81.0

* Approved graduate coursework (500+ level) from Any College of Engineering, any College of Computing and Informatics, MATH, PHYS, COOP, ISTM, MTED, OPR, BMES, BIO, CHEM, ENVS, ENVP, LING, SCTS, DIGM, BST, EPI, or CIE course.
Additional courses may be considered upon approval from the Department of Electrical and Computer Engineering.

Post-Master's PhD Student

ECE 997 Dissertation Research 9.0
or ECE 998 Ph.D. Dissertation

Students must complete 36.0 graduate credits (500+ level) from approved College of Engineering departments *

Total Credits 36.0

* Approved graduate coursework (500+ level) from Any College of Engineering, any College of Computing and Informatics, MATH, PHYS, COOP, ISTM, MTED, OPR, BMES, BIO, CHEM, ENVS, ENVP, LING, SCTS, DIGM, BST, EPI, or CIE course.
Additional courses may be considered upon approval from the Department of Electrical and Computer Engineering.

Sample Plan of Study

Post-Bachelor's PhD Student

<table>
<thead>
<tr>
<th>First Year</th>
<th>Credits</th>
<th>Credits</th>
<th>Credits</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Winter</td>
<td>Spring</td>
<td>Summer</td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>ECE 997 or 998</td>
<td>9.0 Graduate Coursework</td>
<td>9.0 Graduate Coursework</td>
<td>9.0 VACATION</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>Second Year</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>Graduate Coursework</td>
<td>9.0 Graduate Coursework</td>
<td>9.0 Graduate Coursework</td>
<td>9.0 VACATION</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>Third Year</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>Graduate Coursework</td>
<td>9.0 Graduate Coursework</td>
<td>9.0 Graduate Coursework</td>
<td>9.0 VACATION</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>Fourth Year</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>Graduate Coursework</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0 VACATION</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>0</td>
</tr>
</tbody>
</table>

Total Credits 90

Post-Master's PhD Student

<table>
<thead>
<tr>
<th>First Year</th>
<th>Credits</th>
<th>Credits</th>
<th>Credits</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Winter</td>
<td>Spring</td>
<td>Summer</td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>ECE 997 or 998</td>
<td>9.0 Graduate Coursework</td>
<td>9.0 Graduate Coursework</td>
<td>9.0 VACATION</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>0</td>
</tr>
</tbody>
</table>
Facilities

Drexel University and the Electrical and Computer Engineering Department are nationally recognized for a strong history of developing innovative research. Research programs in the ECE Department prepare students for careers in research and development, and aim to endow graduates with the ability to identify, analyze, and address new technical and scientific challenges. The ECE Department is well equipped with state-of-the-art facilities in each of the following ECE Research laboratories:

Research Laboratories at the ECE Department

Adaptive Signal Processing and Information Theory Research Group

The Adaptive Signal Processing and Information Theory Research Group conducts research in the area of signal processing and information theory. Our main interests are belief/expectation propagation, turbo decoding and composite adaptive system theory. We are currently doing projects on the following topics:

- Delay mitigating codes for network coded systems
- Distributed estimation in sensor networks via expectation propagation
- Turbo speaker identification
- Performance and convergence of expectation propagation
- Investigating bounds for SINR performance of autocorrelation based channel shorteners

Applied Networking Research Lab

Applied Networking Research Lab (ANRL) projects focus on modeling and simulation as well as experimentation in wired, wireless and sensor networks. ANRL is the home of MuTANT, a Multi-Protocol Label Switched Traffic Engineering and Analysis Testbed composed of 10 high-end Cisco routers and several PC-routers, also used to study other protocols in data networks as well as automated network configuration and management. The lab also houses a sensor network testbed.

Bioimage Laboratory

Uses computer gaming hardware for enhanced and affordable 3-D visualization, along with techniques from information theory and machine learning to combine the exquisite capabilities of the human visual system with computational sensing techniques for analyzing vast quantities of image sequence data.

Data Fusion Laboratory

The Data Fusion Laboratory investigates problems in multisensory detection and estimation, with applications in robotics, digital communications, radar, and target tracking. Among the projects in progress: computationally efficient parallel distributed detection architectures, data fusion for robot navigation, modulation recognition and RF scene analysis in time-varying environments, pattern recognition in biological data sequences and large arrays, and hardware realizations of data fusion architectures for target detection and target tracking.

Drexel Network Modeling Laboratory

The Drexel Network Modeling Laboratory investigates problems in the mathematical modeling of communication networks, with specific focus on wireless ad hoc networks, wireless sensor networks, and supporting guaranteed delivery service models on best effort and multipath routed networks. Typical methodologies employed in our research include mathematical modeling, computer simulation, and performance optimization, often with the end goal of obtaining meaningful insights into network design principles and fundamental performance tradeoffs.

Drexel Power-Aware Computing Laboratory

The Power-Aware Computing Lab investigates methods to increase energy efficiency across the boundaries of circuits, architecture, and systems. Our recent accomplishments include the Sigil profiling tool, scalable modeling infrastructure for accelerator implementations, microarchitecture-aware VDD gating algorithms, an accelerator architecture for ultrasound imaging, evaluation of hardware reference counting, hardware and operating system support for power-agile computing, and memory systems for accelerator-based architectures.

Drexel University Nuclear Engineering Education Laboratory

The field of nuclear engineering encompasses a wide spectrum of occupations, including nuclear reactor design, medical imaging, homeland security, and oil exploration. The Drexel University Nuclear Engineering Education Laboratory (DUNEEL) provides fundamental hands on understanding for
The Drexel Wireless Systems Laboratory (DWSL) contains an extensive suite of equipment for constructing, debugging, and testing prototype wireless communications systems. Major equipment within DWSL includes:

- software defined radio network testbeds for rapidly prototyping new communications and network systems,
- electromagnetic anechoic chamber and reverberation chambers for testing new wireless technologies,
- experimental cell tower for field testing new wireless technologies.

The lab is also equipped with network analyzers, high speed signal generators, oscilloscopes, and spectrum analyzers as well as several Zigbee development platforms for rapidly prototyping sensor networks. The lab offers laboratory coursework in wireless network security, collaborative intelligent radio networks, and fundamental analog and digital communication systems.

Drexel VLSI Laboratory

The Drexel VLSI Laboratory investigates problems in the design, analysis, optimization and manufacturing of high performance (low power, high throughput) integrated circuits in contemporary CMOS and emerging technologies. Suited with industrial design tools for integrated circuits, simulation tools and measurement beds, the VLSI group is involved with digital and mixed-signal circuit design to verify the functionality of the discovered novel circuit and physical design principles. The Drexel VLSI laboratory develops design methodologies and automation tools in these areas, particularly in novel clocking techniques, featuring resonant clocking, and interconnects, featuring wireless interconnects.

Drexel Wireless Systems Laboratory

The Drexel Wireless Systems Laboratory (DWSL) contains an extensive suite of equipment for constructing,debugging, and testing prototype wireless communications systems. Major equipment within DWSL includes:

- software defined radio network testbeds for rapidly prototyping new communications and network systems,
- electromagnetic anechoic chamber and reverberation chambers for testing new wireless technologies,
- experimental cell tower for field testing new wireless technologies.

The lab is also equipped with network analyzers, high speed signal generators, oscilloscopes, and spectrum analyzers as well as several Zigbee development platforms for rapidly prototyping sensor networks. The lab offers laboratory coursework in wireless network security, collaborative intelligent radio networks, and fundamental analog and digital communication systems.

Ecological and Evolutionary Signal-processing and Informatics Laboratory

The Ecological and Evolutionary Signal-processing and Informatics Laboratory (EESI) seeks to solve problems in high-throughput genomics and engineer better solutions for biochemical applications. The lab's primary thrust is to enhance the use of high-throughput DNA sequencing technologies with pattern recognition and signal processing techniques. Applications include assessing the organism content of an environmental sample, recognizing/classifying potential and functional genes, inferring environmental factors and inter-species relationships, and inferring microbial evolutionary relationships from short-read DNA/RNA fragments. The lab also investigates higher-level biological systems such as modeling and controlling chemotaxis, the movement of cells.

Electric Power Engineering Center

This newly established facility makes possible state-of-the-art research in a wide variety of areas, ranging from detailed theoretical model study to experimental investigation in its high voltage laboratories. The mission is to advance and apply scientific and engineering knowledge associated with the generation, transmission, distribution, use, and conservation of electric power. In pursuing these goals, this center works with electric utilities, state and federal agencies, private industries, nonprofit organizations and other universities on a wide spectrum of projects. Research efforts, both theoretical and experimental, focus on the solution of those problems currently faced by the electric power industry. Advanced concepts for electric power generation are also under investigation to ensure that electric power needs will be met at the present and in the future.

Electronic Design Automation Facility

Industrial-grade electronic design automation software suite and integrated design environment for digital, analog and mixed-signal systems development. Field Programmable Gate Array (FPGA) development hardware. Most up-to-date FPGA/embedded system development hardware kits. Printed circuit board production facility. Also see Drexel VLSI Laboratory.

Microwave-Photonics Device Laboratories

The laboratory is equipped with test and measurement equipment for high-speed analog and digital electronics and fiber optic systems. The test equipment includes network analyzers from Agilent (100kHz- 1.3 GHz and 45 MHz-40 GHz), and Anritsu (45 MHz-6 GHz); spectrum analyzers from Tektronix, HP, and Agilent with measurement capability of DC to 40 GHz and up to 90 GHz using external mixers; signal generators and communication channel modulators from HP, Rhode-Schwarz, Systron Donner, and Agilent; microwave power meter and sensor heads, assortment of passive and active microwave components up to 40 GHz ; data pattern generator and BER tester up to 3Gb/s; optical spectrum analyzer from Anritsu and power meters from HP; single and multimode fiber optic based optical transmitter and receiver boards covering ITU channels at data rates up to 10Gb/s; passive optical components such as isolator, filter, couplers, optical connectors and fusion splicer; LPKF milling machine for fabrication of printed circuit boards; wire-bonding and Cascade probe stations; Intercontinental test fixtures for testing of MMIC circuits and solid-state transistors; state-of-the-art microwave and electromagnetic CAD packages such as Agilent ADS, ANSYS HFSS, and COMSOL multi-physics module.

Multimedia & Information Security Lab [MISL]
The Multimedia and Information Security Lab (MISL) develops algorithms to detect fake images and videos, along with algorithms to determine the true source of an image or video. This research is particularly important because widely available editing software enables multimedia forgers to create perceptually realistic forgeries. Our goal at MISL, is to conduct research that provides information verification and security in scenarios when an information source cannot be trusted.

The research conducted at MISL is part of a new area, known as multimedia forensics, which lies at the intersection of many areas in machine learning and artificial intelligence, signal processing, image and video processing, game theory, etc. Our algorithms work by identifying or learning visually imperceptible traces left in images and videos by processing operations. We use these traces to detect editing or forgery as well as to link an image or video back to the camera that captured it. We also perform research on anti-forensic operations designed to fool forensic techniques. By studying anti-forensics, researchers can identify and address weaknesses in existing forensic techniques as well as develop techniques capable of identifying the use of anti-forensics.

Music and Entertainment Technology Laboratory

The Music and Entertainment Technology Laboratory (MET-lab) is devoted to research in digital media technologies that will shape the future of entertainment, especially in the areas of sound and music. We employ digital signal processing and machine learning to pursue novel applications in music information retrieval, music production and processing technology, and new music interfaces. The MET-lab is also heavily involved in outreach programs for K-12 students and hosts the Summer Music Technology program, a one-week learning experience for high school students. Lab facilities include a sound isolation booth for audio and music recording, a digital audio workstation running ProTools, two large multi-touch display interfaces of our own design, and a small computing cluster for distributed processing.

NanoPhotonics Lab

Our research is primarily in the area of nanophotonics with a focus on the nanoscale interaction of light with matter. Interests include: liquid crystal/polymer composites for gratings, lenses and HOEs; liquid crystal interactions with surfaces and in confined nanospaces; alternative energy generation through novel photon interactions; ink-jet printed conducting materials for RF and photonic applications; and the creation and development of smart textiles technologies including soft interconnects, sensors, and wireless implementations.

Opto-Electro-Mechanical Laboratory

This lab concentrates on the system integration on optics, electronics, and mechanical components and systems, for applications in imaging, communication, and biomedical research. Research areas include: Programmable Imaging with Optical Micro-electrical-mechanical systems (MEMS), in which microscopic mirrors are used to image light into a single photodetector; Pre-Cancerous Detection using White Light Spectroscopy, which performs a cellular size analysis of nuclei in tissue; Free-space Optical Communication using Space Time Coding, which consists of diffused light for computer-to-computer communications, and also tiny lasers and detectors for chip-to-chip communication; Magnetic Particle Locomotion, which showed that particles could swim in a uniform field; and Transparent Antennas using Polymer, which enables antennas to be printed through an ink-jet printer.

Plasma and Magnetics Laboratory

Research is focused on applications of electrical and magnetic technologies to biology and medicine. This includes the subjects of non-thermal atmospheric pressure plasma for medicine, magnetic manipulation of particles for drug delivery and bio-separation, development of miniature NMR sensors for cellular imaging and carbon nanotube cellular probes.

Power Electronics Research Laboratory

The Power Electronics Research Laboratory (PERL) is involved in circuit and design simulation, device modeling and simulation, and experimental testing and fabrication of power electronic circuits. The research and development activities include electrical terminations, power quality, solar photovoltaic systems, GTO modeling, protection and relay coordination, and solid-state circuit breakers. The analysis tools include EMPT, SPICE, and others, which have been modified to incorporate models of such controllable solid-state switches as SCRs, GTOs, and MOSFETs. These programs have a wide variety and range of modeling capabilities used to model electromagnetics and electromechanical transients ranging from microseconds to seconds in duration. The PERL is a fully equipped laboratory with 42 kVA AC and 70 kVA DC power sources and data acquisition systems, which have the ability to display and store data for detailed analysis. Some of the equipment available is a distribution and HV transformer and three phase rectifiers for power sources and digital oscilloscopes for data measuring and experimental analysis. Some of the recent studies performed by the PERL include static VAR compensators, power quality of motor controllers, solid-state circuit breakers, and power device modeling which have been supported by PECO, GE, Gould, and EPRI.

RE Touch Lab

The RE Touch Lab is investigating the perceptual and mechanical basis of active touch perception, or haptics, and the development of new technologies for stimulating the sense of touch, allowing people to touch, feel, and interact with digital content as seamlessly as we do with objects in the real world. We study the scientific foundations of haptic perception and action, and the neuroscientific and biomechanical basis of touch, with a long-term goal of uncovering the fundamental perceptual and mechanical computations that enable haptic interaction. We also create new technologies for rendering artificial touch sensations that simulate those that are experienced when interacting with real objects, inspired by new findings on haptic perception.

Testbed for Power-Performance Management of Enterprise Computing Systems
This computing testbed is used to validate techniques and algorithms aimed at managing the performance and power consumption of enterprise computing systems. The testbed comprises a rack of Dell 2950 and Dell 1950 PowerEdge servers, as well as assorted desktop machines, networked via a gigabit switch. Virtualization of this cluster is enabled by VMware’s ESX Server running the Linux RedHat kernel. It also comprises of a rack of ten Apple Xserve machines networked via a gigabit switch. These servers run the OS X Leopard operating systems and have access to a RAID with TBs of total disk capacity.

Electrical Engineering Faculty

Tom Chmielewski, PhD (Drexel University). Teaching Professor. Modeling and simulation of electro-mechanical systems; optimal, adaptive and nonlinear control; DC motor control; system identification; Kalman filters (smoothing algorithms, tracking); image processing; robot design; biometric technology and design of embedded systems for control applications utilizing MATLAB and SIMULINK

Fernand Cohen, PhD (Brown University). Professor. Surface modeling; tissue characterization and modeling; face modeling; recognition and tracking.

Andrew Cohen, PhD (Rensselaer Polytechnic Institute). Associate Professor. Image processing; multi-target tracking; statistical pattern recognition and machine learning; algorithmic information theory; 5-D visualization

Kapil Dandekar, PhD (University of Texas-Austin) Director of the Drexel Wireless Systems Laboratory (DWSL); Associate Dean of Research, College of Engineering. Professor. Cellular/mobile communications and wireless LAN; smart antenna/MIMO for wireless communications; applied computational electromagnetics; microwave antenna and receiver development; free space optical communication; ultrasonic communication; sensor networks for homeland security; ultrawideband communication.

Afshin Daryoush, ScD (Drexel University). Professor. Digital and microwave photonics; nonlinear microwave circuits; RFIC; medical imaging.

Anup Das, PhD (University of Singapore). Assistant Professor. Design of algorithms for neuromorphic computing, particularly using spiking neural networks, dataflow-based design of neuromorphic computing system, design of scalable computing system; hardware-software co-design and management, and thermal and power management of many-core embedded systems

Bruce A. Eisenstein, PhD (University of Pennsylvania). Arthur J. Rowland Professor of Electrical and Computer Engineering. Pattern recognition; estimation; decision theory.

Adam K. Fontecchio, PhD (Brown University) Director, Center for the Advancement of STEM Teaching and Learning Excellence (CASTLE). Professor. Electro-optics; remote sensing; active optical elements; liquid crystal devices.

Gary Friedman, PhD (University of Maryland-College Park) Associate Department Head for Graduate Affairs. Professor. Biological and biomedical applications of nanoscale magnetic systems.

Allon Guez, PhD (University of Florida). Professor. Intelligent control systems; robotics, biomedical, automation and manufacturing; business systems engineering.

Leonid Hrebien, PhD (Drexel University). Professor. Tissue excitability; acceleration effects on physiology; bioinformatics.

Nagarajan Kandasamy, PhD (University of Michigan) Associate Department Head for Undergraduate Affairs. Associate Professor. Embedded systems, self-managing systems, and fault-tolerant computing, distributed systems, computer architecture, and testing and verification of digital systems.

Youngmoo Kim, PhD (MIT) Director, Expressive and Creative Interactive Technologies (ExCITe) Center. Professor. Audio and music signal processing, voice analysis and synthesis, music information retrieval, machine learning.

Fei Lu, PhD (University of Michigan). Assistant Professor. Power electronics; wireless power transfer technology for the high-power electric vehicles and the low-power electronic devices.

Karen Miu, PhD (Cornell University). Professor. Power systems; distribution networks; distribution automation; optimization; system analysis.

Bahram Nabet, PhD (University of Washington). Professor. Optoelectronics; fabrication and modeling; fiber optic devices; nanoelectronics; nanowires.

Prawat Nagvajara, PhD (Boston University). Associate Professor. System on a chip; embedded systems; power grid computation; testing of computer hardware; fault-tolerant computing; VLSI systems; error control coding.

Dagmar Niebur, PhD (Swiss Federal Institute of Technology). Associate Professor. Intelligent systems; dynamical systems; power system monitoring and control.

Christopher Peters, PhD (University of Michigan). Teaching Professor. Nuclear reactor design; ionizing radiation detection; nuclear forensics; power plant reliability and risk analysis; naval/marine power and propulsion; directed energy/high power microwaves; nonstationary signal processing; radar; electronic survivability/susceptibility to harsh environments; electronic warfare.

Gail L. Rosen, PhD (Georgia Institute of Technology). Associate Professor. Signal processing, signal processing for biological analysis and modeling, bio-inspired designs, source localization and tracking.
Ioannis Savidis, PhD (University of Rochester). Associate Professor. Analysis, modeling, and design methodologies for high performance digital and mixed-signal integrated circuits; Emerging integrated circuit technologies; Electrical and thermal modeling and characterization, signal and power integrity, and power and clock delivery for 3-D IC technologies.

Kevin J. Scoles, PhD (Dartmouth College) Associate Dean for Undergraduate Affairs. Associate Professor. Microelectronics; electric vehicles; solar energy; biomedical electronics.

Harish Sethu, PhD (Lehigh University). Associate Professor. Protocols, architectures and algorithms in computer networks; computer security; mobile ad hoc networks; large-scale complex adaptive networks and systems.

James Shackelford, PhD (Drexel University). Associate Professor. Medical image processing, high performance computing, embedded systems, computer vision, machine learning.

P. Mohana Shankar, PhD (Indian Institute of Technology) Allen Rothwarf Professor of Electrical and Computer Engineering. Professor. Wireless communications; biomedical ultrasonics; fiberoptic bio-sensors.

Jonathan E. Spanier, PhD (Columbia University) Department Head, Mechanical Engineering and Mechanics. Professor. Light-matter interactions in electronic materials, including ferroelectric semiconductors, complex oxide thin film science; laser spectroscopy, including Raman scattering.

Matthew Stamm, PhD (University of Maryland, College Park). Associate Professor. Information Security; multimedia forensics and anti-forensics; information verification; adversarial dynamics; signal processing.

Baris Taskin, PhD (University of Pittsburgh). Professor. Very large-scal integration (VLSI) systems, computer architecture, circuits and systems, electronic design automation (EDA), energy efficient computing.

John Walsh, PhD (Cornell University). Associate Professor. Bounding the region of entropic vectors and its implications for the limits of communication networks, big data distributed storage systems, and graphical model based machine learning; efficient computation and analysis of rate regions for network coding and distributed storage; code construction, polyhedral computation, hierarchy, and symmetry.

Steven Weber, PhD (University of Texas-Austin) Department Head. Professor. Mathematical modeling of computer and communication networks, specifically streaming multimedia and ad hoc networks.

Jaudelice de Oliveira, PhD (Georgia Institute of Technology). Associate Professor. Software-defined networking; social and economic networks; network security; design and analysis of protocols, algorithms and architectures in computer networks, particularly solutions for the Internet of Things.

Emeritus Faculty

Eli Fromm, PhD (Jefferson Medical College). Professor Emeritus. Engineering education; academic research policy; bioinstrumentation; physiologic systems.

Electrical Engineering/Telecommunications Engineering

Major: Electrical/Telecommunications Engineering
Degree Awarded: Master of Science (MS)
Calendar Type: Quarter
Minimum Required Credits: 45.0 (MS)
Co-op Option: Available for full-time, on-campus master's-level students
Classification of Instructional Programs (CIP) code: 14.1001; 14.1004
Standard Occupational Classification (SOC) code: 15-1143; 17-2071

About the Program

Drexel University's Electrical and Computer Engineering Department prepares students to contribute to advances in the rapidly changing field of telecommunications by providing advanced studies as part of the Master of Science (MS) in Electrical and Telecommunications Engineering degree program. The MS in Electrical and Telecommunications Engineering combines the expertise of its faculty in electrical and computer engineering, business, information systems, and humanities. Through its interdisciplinary approach, Drexel's Telecommunications Engineering program trains and nurtures the complete telecommunications engineer.

The MS in Electrical Engineering/Telecommunications Engineering degree is awarded to students who demonstrate in-depth knowledge of the field. The average time required to complete the master's degree is two years of full-time study or three years of part-time study.
A graduate co-op is available for the Master of Science program. For more information, visit the Steinbright Career Development Center's website (http://www.drexel.edu/scdc/co-op/graduate/).

Additional Information

For more information, visit the Department of Electrical and Computer Engineering (https://drexel.edu/engineering/academics/departments/electrical-computer-engineering/) website.

Admission Requirements

Applicants must meet the general requirements for graduate admission, which include at least a 3.0 GPA for the last two years of undergraduate study and for any graduate level study undertaken, and are required to hold a bachelor of science degree in electrical engineering or a related field. Applicants whose undergraduate degrees are not in the field of electrical engineering may be required to take a number of undergraduate courses. The GRE General Test is required of applicants for full-time MS and PhD programs. Applicants whose native language is not English and who do not have a previous degree from a US institution are required to take the Test of English as a Foreign Language (TOEFL).

Additional Information

For more information on how to apply, visit Drexel's Admissions page for Electrical/Telecommunications Engineering (http://www.drexel.edu/grad/programs/coe/electrical-telecommunications/).

The Master of Science in Electrical and Telecommunications Engineering curriculum encompasses 45.0 or 48.0 (with the Graduate Co-Op) approved credit hours, chosen in accordance with the following requirements and a plan of study arranged with the departmental graduate advisor in consultation with the student's research advisor (if applicable). This plan of study must be filed in the Department of Electrical and Computer Engineering and approved with the departmental graduate advisor before the end of the first quarter for a full-time student, or by the end of the first year for a part-time student.

A total of at least 30.0 credit hours must be taken from among the graduate course offerings of the Department of Electrical and Computer Engineering. These credits must be taken at Drexel University. No transfer credit may be used to fulfill these requirements, regardless of content equivalency.

Program Requirements

<table>
<thead>
<tr>
<th>Course Category</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Telecommunications Engineering (ECET) Courses</td>
<td>6.0</td>
</tr>
<tr>
<td>Telecommunications Engineering Elective Courses **</td>
<td>15.0</td>
</tr>
<tr>
<td>General Electrical and Computer Engineering Courses *</td>
<td>9.0</td>
</tr>
<tr>
<td>Elective Courses ***</td>
<td>15.0</td>
</tr>
<tr>
<td>Total Credits</td>
<td>45.0</td>
</tr>
</tbody>
</table>

* 500-level or higher courses from ECEE, ECE, ECES, and ECET.
** 500-level or higher courses from ECEC, ECEE, ECEP, ECES, ECET, and ECE.
*** 500-level or higher courses from ECEC, ECEE, ECEP, ECES, ECET, ECE, AE, CHE, CIVE, CMGT, EGMT, ENGR, ENVE, ET, MATE, MEM, PROJ, PRMT, SYSE, BMES, MATH, PHYS, CHEM, BIO, OPR, and CS.

With the remaining required 15.0 credit hours, students may take graduate coursework, subject to the approval of the departmental graduate advisor, in electrical and computer engineering, mathematics, physics or other engineering disciplines.

In addition, students pursuing an MS in Electrical and Telecommunications Engineering are allowed and strongly encouraged to take the following course as part of their required 15.0 credit hours:

• **COM 651 : Media and Communication Policy in a Digitized World**

Although not required, students are encouraged to complete a master's thesis as part of the MS studies. Those students who choose the thesis option may count up to 9.0 research/thesis credits as part of their required credit hour requirements.

Graduate Co-op Program

Students may choose to participate in the Graduate Co-op Program, where 6.0 credit hours can be earned for a six month cooperative education experience in industry, working on curriculum related projects. The total number of required credit hours is increased to 48.0 for those students who choose to pursue the Graduate Co-op option. This change represents an increase in non-departmental required credit hours to a total of 18.0 credit hours, 6.0 of which are earned from the cooperative education experience.

Please note that ECEC 500 **Fundamentals of Computer Hardware** and ECEC 600 **Fundamentals of Computer Networks** do not count toward the credit requirements to complete the MS in Electrical Engineering degree program.
Additional Information

For more information on curricular requirements, visit the Department of Electrical and Computer Engineering (http://www.ece.drexel.edu/) website.

Facilities

Drexel University and the Electrical and Computer Engineering Department are nationally recognized for a strong history of developing innovative research. Research programs in the ECE Department prepare students for careers in research and development, and aim to endow graduates with the ability to identify, analyze, and address new technical and scientific challenges. The ECE Department is well equipped with state-of-the-art facilities in each of the following ECE Research laboratories:

Research Laboratories at the ECE Department

Adaptive Signal Processing and Information Theory Research Group

The Adaptive Signal Processing and Information Theory Research Group conducts research in the area of signal processing and information theory. Our main interests are belief/expectation propagation, turbo decoding and composite adaptive system theory. We are currently doing projects on the following topics:

i) Delay mitigating codes for network coded systems,
ii) Distributed estimation in sensor networks via expectation propagation,
iii) Turbo speaker identification,
iv) Performance and convergence of expectation propagation,
v) Investigating bounds for SINR performance of autocorrelation based channel shorteners.

Applied Networking Research Lab

Applied Networking Research Lab (ANRL) projects focus on modeling and simulation as well as experimentation in wired, wireless and sensor networks. ANRL is the home of MuTANT, a Multi-Protocol Label Switched Traffic Engineering and Analysis Testbed composed of 10 high-end Cisco routers and several PC-routers, also used to study other protocols in data networks as well as automated network configuration and management. The lab also houses a sensor network testbed.

Bioimage Laboratory

Uses computer gaming hardware for enhanced and affordable 3-D visualization, along with techniques from information theory and machine learning to combine the exquisite capabilities of the human visual system with computational sensing techniques for analyzing vast quantities of image sequence data.

Data Fusion Laboratory

The Data Fusion Laboratory investigates problems in multisensory detection and estimation, with applications in robotics, digital communications, radar, and target tracking. Among the projects in progress: computationally efficient parallel distributed detection architectures, data fusion for robot navigation, modulation recognition and RF scene analysis in time-varying environments, pattern recognition in biological data sequences and large arrays, and hardware realizations of data fusion architectures for target detection and target tracking.

Drexel Network Modeling Laboratory

The Drexel Network Modeling Laboratory investigates problems in the mathematical modeling of communication networks, with specific focus on wireless ad hoc networks, wireless sensor networks, and supporting guaranteed delivery service models on best effort and multipath routed networks. Typical methodologies employed in our research include mathematical modeling, computer simulation, and performance optimization, often with the end goal of obtaining meaningful insights into network design principles and fundamental performance tradeoffs.

Drexel Power-Aware Computing Laboratory

The Power-Aware Computing Lab (http://dpac.ece.drexel.edu/) investigates methods to increase energy efficiency across the boundaries of circuits, architecture, and systems. Our recent accomplishments include the Sigil profiling tool, scalable modeling infrastructure for accelerator implementations, microarchitecture-aware VDD gating algorithms, an accelerator architecture for ultrasound imaging, evaluation of hardware reference counting, hardware and operating system support for power-agile computing, and memory systems for accelerator-based architectures.

Drexel University Nuclear Engineering Education Laboratory

The field of nuclear engineering encompasses a wide spectrum of occupations, including nuclear reactor design, medical imaging, homeland security, and oil exploration. The Drexel University Nuclear Engineering Education Laboratory (DUNEEL) provides fundamental hands on understanding for power plant design and radiation detection and analysis. Software based study for power plant design, as well as physical laboratory equipment for radiation detection, strengthen the underlying concepts used in nuclear engineering such that the student will comprehend and appreciate the basic concepts and terminology used in various nuclear engineering professions. Additionally, students use the laboratory to develop methods for delivering remote, live time radiation detection and analysis. The goal of DUNEEL is to prepare students for potential employment in the nuclear engineering arena.
Drexel VLSI Laboratory

The Drexel VLSI Laboratory investigates problems in the design, analysis, optimization and manufacturing of high performance (low power, high throughput) integrated circuits in contemporary CMOS and emerging technologies. Suited with industrial design tools for integrated circuits, simulation tools and measurement beds, the VLSI group is involved with digital and mixed-signal circuit design to verify the functionality of the discovered novel circuit and physical design principles. The Drexel VLSI laboratory develops design methodologies and automation tools in these areas, particularly in novel clocking techniques, featuring resonant clocking, and interconnects, featuring wireless interconnects.

Drexel Wireless Systems Laboratory

The Drexel Wireless Systems Laboratory (DWSL) contains an extensive suite of equipment for constructing, debugging, and testing prototype wireless communications systems. Major equipment within DWSL includes:

- three software defined radio network testbeds (HYDRA, USRP, and WARP) for rapidly prototyping radio, optical and ultrasonic communications systems,
- a TDK RF anechoic chamber and EMSCAN desktop antenna pattern measurement system,
- a materials printer and printed circuit board milling machine for fabricating conformal antennas and wireless protocol conformance testing equipment from Aeroflex.

The lab is also equipped with network analyzers, high speed signal generators, oscilloscopes, and spectrum analyzers as well as several Zigbee development platforms for rapidly prototyping sensor networks.

DWSL personnel also collaborate to create wearable, fabric based transceivers through collaboration with the Shima Seiki Haute Laboratory in the Drexel ExCITE Center. The knitting equipment at Drexel includes sixteen SDS-ONE APEX3 workstations and four state-of-the-art knitting machines. The workstations accurately simulate fabric construction and provide researchers and designers the opportunity to program, create and simulate textile prototypes, import CAD specifications of final products, and produce made-to-measure or mass-produced pieces on Shima Seiki knitting machines. For testing smart textiles for biomedical, DWSL personnel also have collaborators in the Center for Interdisciplinary Clinical Simulation and Practice (CICSP) in the Drexel College of Medicine which provides access to medical mannequin simulators.

Ecological and Evolutionary Signal-processing and Informatics Laboratory

The Ecological and Evolutionary Signal-processing and Informatics Laboratory (EESI) seeks to solve problems in high-throughput genomics and engineer better solutions for biochemical applications. The lab's primary thrust is to enhance the use of high-throughput DNA sequencing technologies with pattern recognition and signal processing techniques. Applications include assessing the organism content of an environmental sample, recognizing/classifying potential and functional genes, inferring environmental factors and inter-species relationships, and inferring microbial evolutionary relationships from short-read DNA/RNA fragments. The lab also investigates higher-level biological systems such as modeling and controlling chemotaxis, the movement of cells.

Electric Power Engineering Center

This newly established faculty makes possible state-of-the-art research in a wide variety of areas, ranging from detailed theoretical model study to experimental investigation in its high voltage laboratories. The mission is to advance and apply scientific and engineering knowledge associated with the generation, transmission, distribution, use, and conservation of electric power. In pursuing these goals, this center works with electric utilities, state and federal agencies, private industries, nonprofit organizations and other universities on a wide spectrum of projects. Research efforts, both theoretical and experimental, focus on the solution of those problems currently faced by the electric power industry. Advanced concepts for electric power generation are also under investigation to ensure that electric power needs will be met at the present and in the future.

Electronic Design Automation Facility

Industrial-grade electronic design automation software suite and integrated design environment for digital, analog and mixed-signal systems development. Field Programmable Gate Array (FPGA) development hardware. Most up-to-date FPGA/embedded system development hardware kits. Printed circuit board production facility. Also see Drexel VLSI Laboratory.

Microwave-Photonics Device Laboratories

The laboratory is equipped with test and measurement equipment for high-speed analog and digital electronics and fiber optic systems. The test equipment includes network analyzers from Agilent (100kHz- 1.3 GHz and 45 Mhz-40 GHz), and Anritsu (45 MHz-6 GHz); spectrum analyzers from Tektronix, HP, and Agilent with measurement capability of DC to 40 GHz and up to 90 GHz using external mixers; signal generators and communication channel modulators from HP, Rhode-Schwarz, Systron Donner, and Agilent; microwave power meter and sensor heads, assortment of passive and active microwave components up to 40 GHz; data pattern generator and BER tester up to 3Gb/s; optical spectrum analyzer from Anritsu and power meters from HP; single and multimode fiber optic based optical transmitter and receiver boards covering ITU channels at data rates up to 10Gb/s; passive optical components such as isolator, filter, couplers, optical connectors and fusion splicer; LPKF milling machine for fabrication of printed circuit boards; wire-bonding and Cascade probe stations; Intercontinental test fixtures for testing of MICC microcircuits and solid-state transistors; state-of-the-art microwave and electromagnetic CAD packages such as Agilent ADS, ANSYS HFSS, and COMSOL multi-physics module.
Music and Entertainment Technology Laboratory

The Music and Entertainment Technology Laboratory (MET-lab) is devoted to research in digital media technologies that will shape the future of entertainment, especially in the areas of sound and music. We employ digital signal processing and machine learning to pursue novel applications in music information retrieval, music production and processing technology, and new music interfaces. The MET-lab is also heavily involved in outreach programs for K-12 students and hosts the Summer Music Technology program, a one-week learning experience for high school students. Lab facilities include a sound isolation booth for audio and music recording, a digital audio workstation running ProTools, two large multi-touch display interfaces of our own design, and a small computing cluster for distributed processing.

NanoPhotonics+ Lab

Our research is primarily in the area of nanophotonics with a focus on the nanoscale interaction of light with matter. Interests include: liquid crystal/polymer composites for gratings, lenses and HOEs; liquid crystal interactions with surfaces and in confined nanospaces; alternative energy generation through novel photon interactions; ink-jet printed conducting materials for RF and photonic applications; and the creation and development of smart textiles technologies including soft interconnects, sensors, and wireless implementations.

Opto-Electro-Mechanical Laboratory

This lab concentrates on the system integration on optics, electronics, and mechanical components and systems, for applications in imaging, communication, and biomedical research. Research areas include: Programmable Imaging with Optical Micro-electrical-mechanical systems (MEMS), in which microscopic mirrors are used to image light into a single photodetector; Pre-Cancerous Detection using White Light Spectroscopy, which performs a cellular size analysis of nuclei in tissue; Free-space Optical Communication using Space Time Coding, which consists of diffused light for computer-to-computer communications, and also tiny lasers and detectors for chip-to-chip communication; Magnetic Particle Locomotion, which showed that particles could swim in a uniform field; and Transparent Antennas using Polymer, which enables antennas to be printed through an ink-jet printer.

Plasma and Magnetics Laboratory

Research is focused on applications of electrical and magnetic technologies to biology and medicine. This includes the subjects of non-thermal atmospheric pressure plasma for medicine, magnetic manipulation of particles for drug delivery and bio-separation, development of miniature NMR sensors for cellular imaging and carbon nanotube cellular probes.

Power Electronics Research Laboratory

The Power Electronics Research Laboratory (PERL) is involved in circuit and design simulation, device modeling and simulation, and experimental testing and fabrication of power electronic circuits. The research and development activities include electrical terminations, power quality, solar photovoltaic systems, GTO modeling, protection and relay coordination, and solid-state circuit breakers. The analysis tools include EMPT, SPICE, and others, which have been modified to incorporate models of such controllable solid-state switches as SCRs, GTOs, and MOSFETs. These programs have a wide variety and range of modeling capabilities used to model electromagnetics and electromechanical transients ranging from microseconds to seconds in duration. The PERL is a fully equipped laboratory with 42 kVA AC and 70 kVA DC power sources and data acquisition systems, which have the ability to display and store data for detailed analysis. Some of the equipment available is a distribution and HV transformer and three phase rectifiers for power sources and digital oscilloscopes for data measuring and experimental analysis. Some of the recent studies performed by the PERL include static VAR compensators, power quality of motor controllers, solid-state circuit breakers, and power device modeling which have been supported by PECO, GE, Gould, and EPRI.

RE Touch Lab

The RE Touch Lab is investigating the perceptual and mechanical basis of active touch perception, or haptics, and the development of new technologies for stimulating the sense of touch, allowing people to touch, feel, and interact with digital content as seamlessly as we do with objects in the real world. We study the scientific foundations of haptic perception and action, and the neuroscientific and biomechanical basis of touch, with a long-term goal of uncovering the fundamental perceptual and mechanical computations that enable haptic interaction. We also create new technologies for rendering artificial touch sensations that simulate those that are experienced when interacting with real objects, inspired by new findings on haptic perception.

Testbed for Power-Performance Management of Enterprise Computing Systems

This computing testbed is used to validate techniques and algorithms aimed at managing the performance and power consumption of enterprise computing systems. The testbed comprises a rack of Dell 2950 and Dell 1950 PowerEdge servers, as well as assorted desktop machines, networked via a gigabit switch. Virtualization of this cluster is enabled by VMWare’s ESX Server running the Linux RedHat kernel. It also comprises of a rack of ten Apple Xserve machines networked via a gigabit switch. These servers run the OS X Leopard operating systems and have access to a RAID with TBs of total disk capacity.

Electrical Engineering Faculty

Tom Chmielewski, PhD (Drexel University). Teaching Professor. Modeling and simulation of electro-mechanical systems; optimal, adaptive and nonlinear control; DC motor control; system identification; Kalman filters (smoothing algorithms, tracking); image processing; robot design; biometric technology and design of embedded systems for control applications utilizing MATLAB and SIMULINK.
Fernand Cohen, PhD (Brown University). Professor. Surface modeling; tissue characterization and modeling; face modeling; recognition and tracking.

Andrew Cohen, PhD (Rensselaer Polytechnic Institute). Associate Professor. Image processing; multi-target tracking; statistical pattern recognition and machine learning; algorithmic information theory; 5-D visualization

Kapil Dandekar, PhD (University of Texas-Austin) Director of the Drexel Wireless Systems Laboratory (DWSL); Associate Dean of Research, College of Engineering. Professor. Cellular/mobile communications and wireless LAN; smart antenna/MIMO for wireless communications; applied computational electromagnetics; microwave antenna and receiver development; free space optical communication; ultrasonic communication; sensor networks for homeland security; ultrawideband communication.

Afshin Daryoush, ScD (Drexel University). Professor. Digital and microwave photonics; nonlinear microwave circuits; RFIC; medical imaging.

Anup Das, PhD (Universit of Singapore). Assistant Professor. Design of algorithms for neuromorphic computing, particularly using spiking neural networks, dataflow-based design of neuromorphic computing system, design of scalable computing system; hardware-software co-design and management, and thermal and power management of many-core embedded systems

Bruce A. Eisenstein, PhD (University of Pennsylvania). Arthur J. Rowland Professor of Electrical and Computer Engineering. Pattern recognition; estimation; decision theory.

Adam K. Fontecchio, PhD (Brown University) Director, Center for the Advancement of STEM Teaching and Learning Excellence (CASTLE). Professor. Electro-optics; remote sensing; active optical elements; liquid crystal devices.

Gary Friedman, PhD (University of Maryland-College Park) Associate Department Head for Graduate Affairs. Professor. Biological and biomedical applications of nanoscale magnetic systems.

Allon Guez, PhD (University of Florida). Professor. Intelligent control systems; robotics, biomedical, automation and manufacturing; business systems engineering.

Leonid Hrebien, PhD (Drexel University). Professor. Tissue excitability; acceleration effects on physiology; bioinformatics.

Nagarajan Kandasamy, PhD (University of Michigan) Associate Department Head for Undergraduate Affairs. Associate Professor. Embedded systems, self-managing systems, reliable and fault-tolerant computing, distributed systems, computer architecture, and testing and verification of digital systems.

Youngmoo Kim, PhD (MIT) Director, Expressive and Creative Interactive Technologies (ExCITe) Center. Professor. Audio and music signal processing, voice analysis and synthesis, music information retrieval, machine learning.

Fei Lu, PhD (University of Michigan). Assistant Professor. Power electronics; wireless power transfer technology for the high-power electric vehicles and the low-power electronic devices.

Karen Miu, PhD (Cornell University). Professor. Power systems; distribution networks; distribution automation; optimization; system analysis.

Bahram Nabet, PhD (University of Washington). Professor. Optoelectronics; fabrication and modeling; fiber optic devices; nanoelectronics; nanowires.

Prawat Nagvajara, PhD (Boston University). Associate Professor. System on a chip; embedded systems; power grid computation; testing of computer hardware; fault-tolerant computing; VLSI systems; error control coding.

Dagmar Niebur, PhD (Swiss Federal Institute of Technology). Associate Professor. Intelligent systems; dynamical systems; power system monitoring and control.

Christopher Peters, PhD (University of Michigan). Teaching Professor. Nuclear reactor design; ionizing radiation detection; nuclear forensics; power plant reliability and risk analysis; naval/marine power and propulsion; directed energy/high power microwaves; nonstationary signal processing; radar; electronic survivability/susceptibility to harsh environments; electronic warfare.

Gail L. Rosen, PhD (Georgia Institute of Technology). Associate Professor. Signal processing, signal processing for biological analysis and modeling, bio-inspired designs, source localization and tracking.

Ioannis Savvidis, PhD (University of Rochester). Associate Professor. Analysis, modeling, and design methodologies for high performance digital and mixed-signal integrated circuits; Emerging integrated circuit technologies; Electrical and thermal modeling and characterization, signal and power integrity, and power and clock delivery for 3-D IC technologies

Kevin J. Scoles, PhD (Dartmouth College) Associate Dean for Undergraduate Affairs. Associate Professor. Microelectronics; electric vehicles; solar energy; biomedical electronics.

Harish Sethu, PhD (Lehigh University). Associate Professor. Protocols, architectures and algorithms in computer networks; computer security; mobile ad hoc networks; large-scale complex adaptive networks and systems.
James Shackleford, PhD (Drexel University). Associate Professor. Medical image processing, high performance computing, embedded systems, computer vision, machine learning

P. Mohana Shankar, PhD (Indian Institute of Technology) Allen Rothwarf Professor of Electrical and Computer Engineering. Professor. Wireless communications; biomedical ultrasounds; fiberoptic bio-sensors.

Jonathan E. Spanier, PhD (Columbia University) Department Head, Mechanical Engineering and Mechanics. Professor. Light-matter interactions in electronic materials, including ferroelectric semiconductors, complex oxide thin film science; laser spectroscopy, including Raman scattering.

Matthew Stamm, PhD (University of Maryland, College Park). Associate Professor. Information Security; multimedia forensics and anti-forensics; information verification; adversarial dynamics; signal processing

Baris Taskin, PhD (University of Pittsburgh). Professor. Very large-scare integration (VLSI) systems, computer architecture, circuits and systems, electronic design automation (EDA), energy efficient computing.

John Walsh, PhD (Cornell University). Associate Professor. Bounding the region of entropic vectors and its implications for the limits of communication networks, big data distributed storage systems, and graphical model based machine learning; efficient computation and analysis of rate regions for network coding and distributed storage; code construction, polyhedral computation, hierarchy, and symmetry

Steven Weber, PhD (University of Texas-Austin) Department Head. Professor. Mathematical modeling of computer and communication networks, specifically streaming multimedia and ad hoc networks.

Jaudelice de Oliveira, PhD (Georgia Institute of Technology). Associate Professor. Software-defined networking; social and economic networks; network security; design and analysis of protocols, algorithms and architectures in computer networks, particularly solutions for the Internet of Things

Emeritus Faculty

Eli Fromm, PhD (Jefferson Medical College). Professor Emeritus. Engineering education; academic research policy; bioinstrumentation; physiologic systems.

Engineering Management

Major: Engineering Management
Degree Awarded: Master of Science (MS)
Calendar Type: Quarter
Minimum Required Credits: 45.0
Co-op Option: Available for full-time, on-campus master’s-level students
Classification of Instructional Programs (CIP) code: 15.1501
Standard Occupational Classification (SOC) code: 11-9041

About the Program

In our increasingly complex, technologically oriented economy, demand has risen for professionals with the expertise to manage both human and technological resources: a combination of talents crucial to organizations competing in the global marketplace. Students graduating with the master’s in engineering management are significantly better positioned to meet the challenge.

The Engineering Management Program (http://www.drexel.edu/egmt/) is designed to provide the background in management science necessary to advance from purely technical positions to supervisory responsibilities in such areas as research and development, production, engineering, design, and technical marketing. Study can be on a part-time or full-time basis, and courses are available both online and face to face.

Engineering management is a multidisciplinary program offering a core curriculum and specialization in a selected area of technology or management. Majors in engineering management should hold a bachelor’s degree in engineering, basic science, or a related field. The program is open to those professionals who aspire to be engineering or technically based managers.

Certificate Opportunity

The Engineering Management Program offers a five-course Graduate Certificate in Engineering Management (p. 125).

Students can pursue the Graduate Certificate in Engineering Management, earn the credential, and subsequently apply those credits toward completion of a master’s in engineering management. However, current students in pursuit of the master’s in engineering management may not simultaneously pursue the graduate certificate.
Non-engineering management graduate students in the College of Engineering are welcome to apply for the certificate with Advisor approval, and they can do so while simultaneously pursuing their primary degree.

Additional Information

For more information about the program, visit the Engineering Management (http://online.drexel.edu/online-degrees/engineering-degrees/ms-egmt/) program page.

Admission Requirements

Admission to this program requires:

- A four-year bachelor of science degree in engineering from an ABET-accredited institution in the United States or an equivalent international institution. Bachelor's degrees in math or the physical sciences may also be considered for admission.
- Minimum cumulative undergraduate GPA of 3.0. If any other graduate work has been completed, the average GPA must be at least 3.0.
- Complete graduate school application.
- Official transcripts from all universities or colleges and other post-secondary educational institutions (including trade schools) attended.
- Two letters of recommendation, professional or academic (at least one professional).
- Resume
- A personal statement explaining why you wish to earn the degree and why you are prepared to succeed.
- International students must submit an Internet-based TOEFL (IBT = score of 94 or higher).

At least three years of relevant professional work experience are recommended but not required.

Interested students should complete the Drexel University Online admission application (http://online.drexel.edu/online-degrees/engineering-degrees/ms-egmt/#admissionscriteria) for admission into this online program.

Degree Requirements

Students may take their required elective credits from any graduate-level course(s) in engineering, business, or another college for which they have adequate preparation and can obtain approvals from the college and the engineering management program.

All candidates are encouraged to discuss areas of interest with the program advisor and to develop a proposed plan of study during the early stages of the program.

Note: Specific course requirements may be waived for students who have taken equivalent courses elsewhere.

Engineering Management

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGMT 501</td>
<td>Leading and Managing Technical Workers</td>
<td>3.0</td>
</tr>
<tr>
<td>EGMT 502</td>
<td>Analysis and Decision Methods for Technical Managers</td>
<td>3.0</td>
</tr>
<tr>
<td>EGMT 504</td>
<td>Design Thinking for Engineering Communications</td>
<td>3.0</td>
</tr>
<tr>
<td>EGMT 581</td>
<td>Meeting Engineering Leadership Challenges</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Quantitative Analysis

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGMT 571</td>
<td>Engineering Statistics</td>
<td>3.0</td>
</tr>
<tr>
<td>EGMT 572</td>
<td>Statistical Data Analysis *</td>
<td>3.0</td>
</tr>
<tr>
<td>EGMT 573</td>
<td>Operations Research</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Economics and Financial Management

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGMT 531</td>
<td>Engineering Economic Evaluation & Analysis</td>
<td>3.0</td>
</tr>
<tr>
<td>EGMT 535</td>
<td>Financial Management</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Engineering Management Capstone

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGMT 692</td>
<td>Engineering Management Capstone</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Electives

Select five of the following electives: **

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGMT 536</td>
<td>Advanced Financial Management for Engineers</td>
<td></td>
</tr>
<tr>
<td>EGMT 650</td>
<td>Systems Thinking for Leaders</td>
<td></td>
</tr>
</tbody>
</table>

Marketing & Business Development

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGMT 614</td>
<td>Marketing: Identifying Customer Needs</td>
<td></td>
</tr>
<tr>
<td>EGMT 615</td>
<td>New Product Conceptualization, Justification, and Implementation</td>
<td></td>
</tr>
<tr>
<td>EGMT 616</td>
<td>Value Creation through New Product Development</td>
<td></td>
</tr>
<tr>
<td>EGMT 660</td>
<td>Sustainable Business Practices for Engineers</td>
<td></td>
</tr>
</tbody>
</table>

Project Management

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGMT 620</td>
<td>Engineering Project Management</td>
<td></td>
</tr>
<tr>
<td>EGMT 625</td>
<td>Project Planning, Scheduling and Control</td>
<td></td>
</tr>
<tr>
<td>EGMT 630</td>
<td>Global Engineering Project Management</td>
<td></td>
</tr>
</tbody>
</table>
Systems Engineering & Systems Thinking

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGMT 635</td>
<td>Visual System Mapping</td>
</tr>
<tr>
<td>SYSE 685</td>
<td>Systems Engineering Management</td>
</tr>
<tr>
<td>SYSE 688</td>
<td>Systems Engineering Analysis</td>
</tr>
<tr>
<td>SYSE 690</td>
<td>Modeling and Simulation</td>
</tr>
</tbody>
</table>

Engineering Law & Ethics

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGMT 610</td>
<td>Ethics & Business Practices for Engineers</td>
</tr>
<tr>
<td>EGMT 652</td>
<td>Engineering Law</td>
</tr>
</tbody>
</table>

Other Approved Electives

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYSE 510</td>
<td>Systems Engineering Process</td>
</tr>
<tr>
<td>SYSE 511</td>
<td>Systems Engineering Tools</td>
</tr>
<tr>
<td>SYSE 520</td>
<td>Global Sustainment and Integrated Logistics</td>
</tr>
<tr>
<td>SYSE 521</td>
<td>Integrated Risk Management</td>
</tr>
<tr>
<td>SYSE 522</td>
<td>Engineering Supply Chain Systems</td>
</tr>
<tr>
<td>SYSE 523</td>
<td>Systems Reliability Engineering</td>
</tr>
<tr>
<td>SYSE 524</td>
<td>Systems Reliability, Availability & Maintainability Analysis</td>
</tr>
<tr>
<td>SYSE 525</td>
<td>Statistical Modeling & Experimental Design</td>
</tr>
<tr>
<td>SYSE 530</td>
<td>Systems Engineering Design</td>
</tr>
<tr>
<td>SYSE 531</td>
<td>Systems Architecture Development</td>
</tr>
<tr>
<td>SYSE 532</td>
<td>Software Systems Engineering</td>
</tr>
<tr>
<td>SYSE 533</td>
<td>Systems Integration and Test</td>
</tr>
</tbody>
</table>

Total Credits: 45.0

* EGMT 572 Statistical Data Analysis requires as a prerequisite EGMT 571 Managerial Statistics or approval from the program administration to complete a waiver and request to take then pass the STAT Placement Exam in place of EGMT 571. If approved for the waiver of EGMT 571, students will be eligible to complete an upper level course substitution to satisfy the degree requirements.

** Students may select electives from other disciplines outside of Engineering Management with prior approval from their advisor.

Sample Plan of Study

Note: Second Year Summer is less than the 4.5-credit minimum required (considered half-time status) of graduate programs to be considered financial aid eligible. As a result, aid will not be disbursed to students this term.

First Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credits Winter</th>
<th>Credits Spring</th>
<th>Credits Summer</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGMT 501</td>
<td>3.0 EGMT 502</td>
<td>3.0 EGMT 572</td>
<td>3.0 EGMT 573</td>
<td>3.0</td>
</tr>
<tr>
<td>EGMT 504</td>
<td>3.0 EGMT 571</td>
<td>3.0 EGMT 531</td>
<td>3.0 EGMT 535</td>
<td>3.0</td>
</tr>
</tbody>
</table>

6 6 6 6

Second Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credits Winter</th>
<th>Credits Spring</th>
<th>Credits Summer</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGMT 581</td>
<td>3.0 EGMT 652</td>
<td>3.0 EGMT 692</td>
<td>3.0 EGMT 635</td>
<td>3.0</td>
</tr>
<tr>
<td>EGMT 610</td>
<td>3.0 EGMT 620</td>
<td>3.0 EGMT 650</td>
<td>3.0</td>
<td></td>
</tr>
</tbody>
</table>

6 6 6 3

Total Credits 45

First Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credits Winter</th>
<th>Credits Spring</th>
<th>Credits Summer</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGMT 501</td>
<td>3.0 EGMT 502</td>
<td>3.0 EGMT 531</td>
<td>3.0 EGMT 535</td>
<td>3.0</td>
</tr>
<tr>
<td>EGMT 504</td>
<td>3.0 EGMT 571</td>
<td>3.0 EGMT 572</td>
<td>3.0 EGMT 573</td>
<td>3.0</td>
</tr>
<tr>
<td>Elective</td>
<td>3.0 Elective</td>
<td>3.0 Elective</td>
<td>3.0 Elective</td>
<td>3.0</td>
</tr>
</tbody>
</table>

9 9 9 9

Second Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGMT 581</td>
<td>3.0</td>
</tr>
<tr>
<td>EGMT 692</td>
<td>3.0</td>
</tr>
<tr>
<td>Elective</td>
<td>3.0</td>
</tr>
</tbody>
</table>

9

Total Credits 45
Engineering Management Faculty

James Breen, MBA, PE (Drexel University). Adjunct Instructor. Vice President of Manufacturing Network Strategy at Johnson & Johnson.

James Lill, MS, PE (Drexel University). Adjunct Instructor. Director of Facilities, Planning and Management for the Downingtown Area School District.

Carole Mablekos, PhD (Purdue University). Adjunct Instructor. Public speaking, technical writing, organizational behavior, and business writing courses.

Miray Pereira, MBA (Rutgers University). Adjunct Instructor. Manages a team of consultants responsible for development, facilitation and implementation of fundamental demand management systems and capabilities for DuPont, most recently with the DuPont Safety & Protection Platform in strategic planning, mergers & acquisitions.

Fredric Plotnick, PhD, JD, PE (Drexel University; Widener University). Adjunct Professor. CEO and principal consultant of Engineering & Property Management Consultants, Inc.

Stephen Smith, PhD (Drexel University). Associate Teaching Professor. Development of online learning and distance teaching/learning techniques for engineering.

Walter Sobkiw, BS (Drexel University). Adjunct Faculty. Author of "Systems Engineering Design Renaissance" and "Systems Practices as Common Sense."

Fernando Tovia, PhD (University of Arkansas). Adjunct Instructor. Core quantitative analysis, strategic planning, supply chain management and manufacturing systems.

John Via, DEngr (Southern Methodist University). Teaching Professor. Pharmaceutical, Bio-pharmaceutical, and Medical Device development and manufacturing.

Emeritus Faculty

Robert Brehm, PhD (Drexel University). Teaching Professor Emeritus. International infrastructure delivery; response to natural catastrophes; risk assessment and mitigation strategies; project management techniques.

Engineering Technology

Major: Engineering Technology
Degree Awarded: Master of Science (MS)
Calendar Type: Quarter
Minimum Required Credits: 45.0
Co-op Option: None
Classification of Instructional Programs (CIP) code: 15.0000
Standard Occupational Classification (SOC) code: 17-3029

About the Program

Effective May 15, 2020, new students are no longer being accepted into this program, however similar options are available. Contact Gerry Willis at gtm23@drexel.edu or 215-895-6253 for additional information.

Engineering Technology provides a broad grasp of technologies, tools, and processes that are critical to a modern industrial workplace. The discipline emphasizes application over theory, and it is designed for individuals who want marketable and immediately applicable skills for technology-intensive organizations.

The discipline of Engineering Technology is closely aligned with Engineering Management, as both degrees develop advanced-level practitioners who are skilled in solving technical and organizational problems through the application of engineering principles and technology. The MSET curriculum provides technical expertise, and Engineering Management provides business and leadership skills that technical workers need to compete successfully in the global marketplace. Engineering Management prepares professionals for supervisory responsibilities in areas such as research and development, production, engineering design, and technical marketing. The MSET program allows students to gain a deep understanding of both the technical and business concerns of an organization, leading to advanced positions in leadership.

Program Goals

Graduates of the Master of Science in Engineering Technology will be expected to:

• Apply scientific and technological concepts to solving technological problems
• Apply concepts and skills developed in a variety of technical and professional disciplines, including computer applications and networking, materials properties and production processes, and quality control to improve production processes and techniques
• Plan, facilitate, and integrate technology and problem-solving techniques in the leadership functions of the industrial enterprise system
• Engage in applied technical research that will add to the knowledge of the discipline and solve problems in an industrial environment
• Develop the communication skills required for technical managers

Additional Information
For more information, view the College of Engineering's Engineering Technology program (https://drexel.edu/engineering/academics/departments/engineering-technology/) webpage or contact Gerry Willis at 215-895-6253 or gtm23@drexel.edu.

Admission Requirements
Applicants must have a 3.0 grade point average in their undergraduate or upper division (junior and senior year) coursework.

International students who have their undergraduate degree from a country whose language is not English can be admitted with a Test of English as a Foreign Language (TOEFL) test score of 550 or better. For more information regarding international applicant requirements, view the International Students Admissions Information (http://drexel.edu/grad/resources/international/) page.

Prerequisite courses
The following prerequisite courses must be completed at the undergraduate level with a minimum grade of C:

• Calculus I
• Calculus II
• Physics I (can be algebra based)
• Physics II (can be algebra based)
• AC/DC Circuit Analysis
• Digital Electronics
• Chemistry I or Materials
• Business Statistics

Additional Information
Visit the Graduate Admissions (https://drexel.edu/grad/programs/coe/) website for more information about requirements and deadlines, as well as instructions for applying online.

Degree Requirements
Candidates for the MS in Engineering Technology must complete a minimum of 45.0 quarter credits. A minimum grade of B is required in all core courses and no more than two C grades in electives.

Of the 45.0 quarter credits required for the degree, 30.0 must be earned at Drexel University, including 24.0 credits of Engineering Technology (ET) courses. A maximum of 15.0 transfer credits may be allowed for graduate courses taken at other institutions if they are appropriate to the student's plan of study.

<table>
<thead>
<tr>
<th>Core Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGMT 571 Engineering Statistics</td>
<td>3.0</td>
</tr>
<tr>
<td>EGMT 610 Ethics & Business Practices for Engineers</td>
<td>3.0</td>
</tr>
<tr>
<td>ET 610 Networks for Industrial Environments</td>
<td>3.0</td>
</tr>
<tr>
<td>ET 615 Rapid Prototyping and Product Design</td>
<td>3.0</td>
</tr>
<tr>
<td>ET 619 Programmable Devices and Systems</td>
<td>3.0</td>
</tr>
<tr>
<td>ET 620 Microsystems and Microfabrication</td>
<td>3.0</td>
</tr>
<tr>
<td>ET 681 Nanomaterials and Nanoengineering</td>
<td>3.0</td>
</tr>
<tr>
<td>ET 725 Sensors and Measurement Systems</td>
<td>3.0</td>
</tr>
<tr>
<td>ET 732 Modern Energy Conversion Technologies</td>
<td>3.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Electives</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGMT 572 Statistical Data Analysis</td>
<td>3.0</td>
</tr>
<tr>
<td>ET 605 Materials for Emerging Technologies</td>
<td>3.0</td>
</tr>
<tr>
<td>ET 635 Engineering Quality Methods</td>
<td>3.0</td>
</tr>
<tr>
<td>ET 675 Reliability Engineering</td>
<td>3.0</td>
</tr>
<tr>
<td>ET 685 Precision Manufacturing</td>
<td>3.0</td>
</tr>
<tr>
<td>ET 730 Lean Manufacturing Principles</td>
<td>3.0</td>
</tr>
<tr>
<td>ET 733 Renewable Energy Technology</td>
<td>3.0</td>
</tr>
<tr>
<td>ET 755 Sustainable and Green Manufacturing</td>
<td>3.0</td>
</tr>
<tr>
<td>PROJ 501 Introduction to Project Management</td>
<td>3.0</td>
</tr>
</tbody>
</table>
Environmental Engineering

Major: Environmental Engineering
Degree Awarded: Master of Science (MS)
Calendar Type: Quarter
Minimum Required Credits: 45.0
Co-op Option: None
Classification of Instructional Programs (CIP) code: 14.1401
Standard Occupational Classification (SOC) code: 17-2081

About the Program

Environmental Engineering is concerned with protecting human, animal, and plant populations from the effects of adverse environmental factors, including toxic chemicals and wastes, pathogenic bacteria, and global warming. Environmental Engineering MS graduates may include students with expertise in one or more of the following sub-disciplines:

- air pollution,
- hazardous and solid waste,
- subsurface contaminant hydrology,
- water resources,
- water and wastewater, and
- sustainability treatment

Environmental engineers also try to minimize the effect of human activities on the physical and living environment so that we can all live more healthy and sustainable lives. This field builds on other branches of engineering, especially civil, chemical, and mechanical engineering. It also builds on information from many of the sciences, such as chemistry, physics, hydrology, geology, atmospheric science, and several specializations of biology.
Environmental Engineering (ecology, microbiology) and public health. Students who elect to study environmental engineering will become familiar with many of these areas because maintaining and improving the environment requires that problems be evaluated and solutions found using a multidisciplinary approach.

Additional Information
For more information, visit the Department of Civil, Architectural and Environmental Engineering (https://drexel.edu/engineering/academics/departments/civil-architectural-environmental-engineering/) webpage.

Admission Requirements
Applicants to the MS in Environmental Engineering must have a minimum of a Bachelor of Science degree. The application package will include:

- undergraduate and graduate transcripts
- three letters of recommendation from faculty or professionals who can evaluate the applicant's promise as a graduate student
- GRE scores (optional)
- a written statement of career and educational goals.

Competitive applicants will possess an undergraduate GPA of 3.30 or higher and GRE scores above the 60th percentile.

For additional information on how to apply, visit Drexel's Admissions page for Environmental Engineering (https://drexel.edu/academics/grad-professional-programs/engineering/environmental-engineering/)

Degree Requirements
The MS in Environmental Engineering program requires 45.0 credits of coursework. Both a theses and a non-thesis option are available. It is possible to finish the MS degree on either a part-time or full-basis. The degree consists of a set of core courses, a sequence in one of several areas of emphasis (treatment process, human risks, water resources, environmental modeling, and air quality) and completion of cognate and elective sequences. After the first term of study, a detailed plan of study is developed with the student's graduate advisor.

Students entering the program without an ABET accredited BS degree in engineering will be required to take additional undergraduate coursework depending on their background and their career objectives.

Core Courses (15.0 credits)
- ENVE 660 Chemical Kinetics in Environmental Engineering 3.0
- ENVS 501 Chemistry of the Environment 3.0

Approved Statistics course
- BIO 640 Biometry 3.0
- or BMES 510 Biomedical Statistics
- or ENVE 750 Data-based Engineering Modeling
- or ENVS 506 Biostatistics

Approved Policy course
- CIVE 564 Sustainable Water Resource Engineering 3.0
- or ECON 616 Public Finance and Cost Benefit Analysis
- or PLCY 503 Theory and Practice of Policy Analysis
- or PLCY 504 Methods of Policy Analysis

Approved Life Sciences course
- ENVE 516 Fundamentals of Environmental Biotechnology 3.0
- or ENVS 511 Evolutionary Ecology
- or ENVS 530 Aquatic Ecology

Specialization Courses (select one area to complete) 9.0-12.0

Environmental Treatment Processes
- AE 550 Comfort Analysis and Indoor Air Quality
- & EOH 612 and Environmental Exposure Science
- & ENVE 727 Risk Assessment
- & ENVE 516 Solid Waste Systems
- & ENVE 661 and Env Engr Op-Chem & Phys
- & ENVE 662 and Envro Engr Unit Oper-Bio
- & ENVE 665 and Hazardous Waste & Groundwater Treatment

Human Risks
- ENVE 516 Comfort Analysis and Indoor Air Quality
- & EOH 612 and Environmental Exposure Science
- or EOH 510 Principles and Practice of Environmental and Occupational Health

Water Resources
- CIVE 564 Sustainable Water Resource Engineering
- & CIVE 565 and Urban Ecohdydraulics
- & ENVE 571 and Environmental Life Cycle Assessment
CIVE 664 Open Channel Hydraulics **
or ENVE 681 Analytical and Numerical Techniques in Hydrology

Environmental Modeling
ENVE 555 Geographic Information Systems **
or ENVE 571 Environmental Life Cycle Assessment
ENVE 681 & ENVE 750 Analytical and Numerical Techniques in Hydrology and Data-based Engineering Modeling

Approved Advanced Math course:
MEM 591 Applied Engr Analy Methods I
or CHE 502 Mathematical Methods in Chemical Engineering
or MATE 535 Numerical Engineering Methods

Air Quality
AE 550 & EOH 510 Comfort Analysis and Indoor Air Quality
& ENVE 560 and Principles and Practice of Environmental and Occupational Health
and Fundamentals of Air Pollution Control

Cognate Discipline Track *** 12.0
Electives or Thesis 9.0-6.0
Total Credits 45.0-46.0

* Students must take 4 courses in an approved specialization, such as environmental treatment processes, human risks, water resources, environmental modeling, or air quality.
** One of these is required.
*** Students must complete a course sequence of 12.0 credits aside from their specialization. This might include a second specialization course sequence or a sequence of elective courses as approved by the student’s advisor and the departmental graduate advisor in any of the following subjects: AE, CHE, CHEC, CHEM, CIVE, ENVE, ENSS, ENVP, ENVS, MATH, MEM (500-699).

Sample Plan of Study

First Year
Fall
Credits Winter Credits Spring Credits Summer Credits
ENVS 501 3.0 Cognate Discipline course 3.0 Cognate Discipline course 3.0 VACATION
Cognate Discipline course 3.0 Cognate Discipline course 3.0 Life Science course 3.0
Statistics course 3.0 Environmental Policy course 3.0 Specialization Track course 3.0
9 9 9 0

Second Year
Fall
Credits Winter Credits
Cognate Discipline course 3.0 Elective or Thesis courses 6.0
Specialization Track courses 6.0 Specialization Track course 3.0
9 9

Total Credits 45

Dual MS Degrees
The university encourages students with broad interest to consider a dual-master’s option. Students can simultaneously work on two master’s degree, applying to both programs a limited number of credits (a maximum of 15.0 to each). Applicants interested in a dual degree should apply for just one program; once enrolled at Drexel, the student may then request admission to the second program. The graduate advisors from both degree programs must approve the student’s enrollment, and they must approve the transfer of credits from one program to another. Applicants considering two degrees are encouraged to contact the appropriate academic departments.

Facilities
The Department of Civil, Architectural, and Environmental Engineering is well equipped with state-of-the-art facilities:
 • Analytical instrumentation for measuring biological and chemical contaminants in air, water and land
 • Field sampling equipment for water and air measurements
 • Molecular biology capability
 • Computational facilities including access to multi-processor clusters, and advanced simulation and data analysis software
Civil, Architectural and Environmental Engineering Faculty

Abieyuwa Aghayere, PhD (University of Alberta). Professor. Structural design - concrete, steel and wood; structural failure analysis; retrofitting of existing structures; new structural systems and materials; engineering education.

Ivan Bartoli, PhD (University of California, San Diego). Associate Professor. Non-destructive evaluation and structural health monitoring; dynamic identification, stress wave propagation modeling.

Shannon Capps, PhD (Georgia Institute of Technology). Associate Professor. Atmospheric chemistry; data assimilation; advanced sensitivity analysis; inverse modeling.

S.C. Jonathan Cheng, PhD (West Virginia University). Associate Professor. Soil mechanics; geosynthetics; geotechnical engineering; probabilistic design; landfill containments; engineering education.

Yaghoob (Amir) Farnam, PhD (Purdue University). Associate Professor. Advanced and sustainable infrastructure materials; multifunctional, self-responsive and bioinspired construction materials; advanced multiscale manufacturing; characterization, and evaluation of construction materials; durability of cement-based materials.

Patricia Gallagher, PhD (Virginia Polytechnic Institute and State University). Professor. Geotechnical and geoenvironmental engineering; soil improvement; soil improvement; recycled materials in geotechnics.

Patrick Gurian, PhD (Carnegie-Mellon University). Professor. Risk analysis of environmental and infrastructure systems; novel adsorbent materials; environmental standard setting; Bayesian statistical modeling; community outreach and environmental health.

Charles N. Haas, PhD (University of Illinois, Urbana-Champaign) Program Head for Environmental Engineering; L. D. Betz Professor of Environmental Engineering. Water treatment; risk assessment; bioterrorism; environmental modeling and statistics; microbiology; environmental health.

Simi Hoque, PhD (University of California - Berkeley) Program Head for Architectural Engineering. Professor. Computational methods to reduce building energy and environmental impacts, urban metabolism, thermal comfort, climate resilience.

Y. Grace Hsuan, PhD (Imperial College). Professor. Durability of polymeric construction materials; advanced construction materials; and performance of geosynthetics.

Joseph B. Hughes, PhD (University of Iowa). Distinguished University Professor. Biological processes and applications of nanotechnology in environmental systems.

L. James Lo, PhD (University of Texas at Austin). Associate Professor. Architectural fluid mechanics; building automation and autonomy; implementation of natural and hybrid ventilation in buildings; airflow distribution in buildings; large-scale air movement in an urban built environment; building and urban informatics; data-enhanced sensing and control for optimal building operation and management; novel data gathering methods for building/urban problem solving; interdisciplinary research on occupant behaviors in the built environment.

Franco Montalto, PhD (Cornell University). Professor. Effects of built infrastructure on societal water needs, ecohydrologic patterns and processes, ecological restoration, green design, and water interventions.

Mira S. Olson, PhD (University of Virginia). Associate Professor. Peace engineering; source water quality protection and management; contaminant and bacterial fate and transport; community engagement.

Miguel A. Pando, PhD (Virginia Polytechnic Institute and State University). Associate Professor. Laboratory testing of geomaterials; geotechnical aspects of natural hazards; soil-structure-interaction; geotechnical engineering.

Matthew Reichenbach, PhD (University of Austin at Texas). Assistant Teaching Professor. Design and behavior of steel structures, bridge engineering, structural stability.

Michael Ryan, PhD (Drexel University) Associate Department Head of Graduate Studies. Associate Teaching Professor. Microbial Source Tracking (MST); Quantitative Microbial Risk Assessment (QMRA); dynamic engineering systems modeling; molecular microbial biology; phylogenetics; metagenomics; bioinformatics; environmental statistics; engineering economics; microbiology; potable and wastewater quality; environmental management systems.

Christopher Sales, PhD (University of California, Berkeley). Associate Professor. Environmental microbiology and biotechnology; biodegradation of environmental contaminants; microbial processes for energy and resource recovery from waste; application of molecular biology, analytical chemistry and bioinformatic techniques to study environmental biological systems.

Robert Swan Teaching Professor. Geotechnical and geosynthetic engineering; soil/geosynthetic interaction and performance; laboratory and field geotechnical/geosynthetic testing.

Sharon Walker, PhD (Yale University) Dean, College of Engineering. Distinguished Professor. Water quality systems engineering
Michael Waring, PhD (University of Texas at Austin) Department Head, Civil, Architectural, and Environmental Engineering. Associate Professor. Indoor air quality and building sustainability; indoor particulate matter fate and transport; indoor chemistry and particle formation; secondary impacts of control technologies and strategies.

Jin Wen, PhD (University of Iowa). Professor. Architectural engineering; Building Energy Efficiency; Intelligent Building; Net-zero Building; and Indoor Air Quality.

Aspasia Zerva, PhD (University of Illinois, Urbana-Champaign). Professor. Earthquake engineering; mechanics; seismology; structural reliability; system identification; advanced computational methods in structural analysis.

Emeritus Faculty

A. Emin Aktan, PhD (University of Illinois, Urbana-Champaign). Professor Emeritus. Health monitoring and management of large infrastructures with emphasis on health monitoring.

Eugenia Ellis, PhD, AIA (Virginia Polytechnic Institute and State University). Professor Emerita. Natural and electrical light sources and effects on biological rhythms and health outcomes; ecological strategies for smart, sustainable buildings of the nexus of health, energy, and technology.

Ahmad Hamid, PhD (McMaster University). Professor Emeritus. Engineered masonry; seismic behavior, design and retrofit of masonry structures; development of new materials and building systems.

Harry G. Harris, PhD (Cornell University). Professor Emeritus. Structural models; dynamics of structures, plates and shells; industrialized building construction.

Joseph P. Martin, PhD (Colorado State University). Professor Emeritus. Geotechnical and geoenvironmental engineering; hydrology; transportation; waste management.

James E. Mitchell, MArch (University of Pennsylvania). Professor Emeritus. Architectural engineering design; building systems; engineering education.

Joseph V. Mullin, PhD (Pennsylvania State University). Teaching Professor Emeritus. Structural engineering; failure analysis; experimental stress analysis; construction materials; marine structures.

Environmental Engineering PhD

Major: Environmental Engineering
Degree Awarded: Doctor of Philosophy (PhD)
Calendar Type: Quarter
Minimum Required Credits: 90.0
Co-op Option: None
Classification of Instructional Programs (CIP) code: 14.1401
Standard Occupational Classification (SOC) code: 17-2081

About the Program

Environmental Engineering is concerned with protecting human, animal, and plant populations from the effects of adverse environmental factors, including toxic chemicals and wastes, pathogenic bacteria, and global warming. Environmental Engineering PhD graduates may include students with expertise in one or more of the following sub-disciplines:

- air pollution,
- hazardous and solid waste,
- subsurface contaminant hydrology,
- water resources,
- water and wastewater, and
- sustainability treatment

Environmental engineers also try to minimize the effect of human activities on the physical and living environment so that we can all live more healthy and sustainable lives. This field builds on other branches of engineering, especially civil, chemical, and mechanical engineering. It also builds on information from many of the sciences, such as chemistry, physics, hydrology, geology, atmospheric science, and several specializations of biology (ecology, microbiology) and public health. Students who elect to study environmental engineering will become familiar with many of these areas because maintaining and improving the environment requires that problems be evaluated and solutions found using a multidisciplinary approach.
Additional Information

For more information, visit the Department of Civil, Architectural and Environmental Engineering (https://drexel.edu/engineering/academics/departments/civil-architectural-environmental-engineering/) webpage.

Admission Requirements

Applicants to the PhD in Environmental Engineering must have a minimum of a Bachelor of Science degree. The application package will include:

- undergraduate and graduate transcripts
- three letters of recommendation from faculty or professionals who can evaluate the applicant's promise as a graduate student
- GRE scores (optional)
- a written statement of career and educational goals.

Competitive applicants will possess an undergraduate GPA of 3.30 or higher and GRE scores above the 60th percentile.

For additional information on how to apply, visit Drexel's Admissions page for Environmental Engineering (https://drexel.edu/academics/grad-professional-programs/engineering/environmental-engineering/).

Degree Requirements

The following general requirements must be satisfied to complete the PhD in Environmental Engineering:

- Establishment of plan of study with PhD advisor
- Completion of 90.0 quarter credit hours (or 45 credit hours post-MS), including taking certain qualifying courses
- Passing of PhD candidacy exam
- Approval of PhD dissertation proposal
- Defense of PhD dissertation

Students entering the PhD program with an approved Master of Science (MS) degree must take 45 credit hours of coursework and research to be approved by their PhD advisor. Students entering the PhD program without an approved MS degree can either complete the 45-credit hour Master of Science in Environmental Engineering (MSENE) degree followed by an additional 45 credit hours post MSENE, or they can choose not to obtain the MSENE and complete only the required “core” courses for the PhD degree within the completion of a total of 90 required credit hours. Students with previous graduate coursework, may transfer no more than 15 quarter credits (equivalent to 12 semester credits) from approved institutions if deemed equivalent to courses offered within the department.

All PhD students are required to meet all milestones of the program. The total credit amount, candidacy exam, and dissertation are University Requirements. Additional requirements are determined by the department offering the degree.

Qualifying Courses

To satisfy the qualifying requirements, students must earn a grade of B+ or better in the five required “core” courses taken at Drexel and must earn an overall GPA of 3.5 or better in these courses.

Undergraduate courses, independent studies, research credits, and courses from other departments cannot be counted toward the qualifying requirements. Student progress toward these requirements will be assessed by the PhD advisor following the student's first year in the PhD program. For more information visit the Environmental Engineering’s PhD Program Requirements page (https://drexel.edu/engineering/academics/graduate-programs/doctoral/environmental-engineering/).

Candidacy Exam

After approximately one year of study beyond the MS degree or completion of the required “core” courses, if their GPA is # 3.5, PhD students can and must take a candidacy examination, consisting of written and oral parts. Successful completion of the candidacy exam enables a student to progress from the designation of PhD student to PhD candidate. The candidacy exam represents the first exam in a series of three that comprise the PhD curriculum.

The Environmental Engineering candidacy examination serves to define the student’s research domain and to evaluate the student’s knowledge and understanding of various fundamental and foundational results in that domain. The student is expected to be able to read, understand, analyze, and explain advanced technical results in a specialized area of Environmental Engineering at an adequate level of detail. The candidacy examination will evaluate those abilities by asking a student to summarize literature and/or undertake a small research project. The student will prepare a written summary of review and/or project results, present the outcome orally, and answer questions about the report or presentation. The candidacy examination committee will evaluate the written report, the oral presentation, and the student’s answers. The candidacy committee membership must follow the requirements of the Graduate College and must be approved by the Graduate College.
Students with a GPA < 3.5 do not meet eligibility requirements to sit for the candidacy exam. In this case, a student may petition the Graduate Advisor to take a Preliminary Written Exam (PWE). A committee will be formed consisting of three members selected from the pool of faculty in the field of research interest of the student and the pool of faculty who taught the courses taken by the student during the preceding terms. An exam will be developed consisting of a series of questions/problems prepared by the three written exam committee members. The written exam, while fixed in duration, may be composed of several different problem-solving assignments. Additionally, the exam may be closed book or open book or a combination thereof. The student will consult with the advisor to become acquainted with the specific rules of the exam. The exam will be graded by the PWE Committee to determine if the student may sit for the candidacy exam.

Dissertation Proposal

After successfully completing the candidacy examination, the PhD candidate must prepare a dissertation proposal that outlines, in detail, the specific problems that will be solved during the research that is conducted to complete the PhD dissertation. The quality of the dissertation proposal should be at the level of a peer-reviewed proposal to a federal funding agency, or a publishable scientific paper. The candidate is responsible for sending the dissertation proposal to the PhD committee no less than two weeks before the scheduled oral presentation. The PhD committee membership need not be the same as the candidacy exam committee, but it follows the same requirements and must be approved by the Graduate College. The oral presentation involves a presentation by the candidate followed by a period during which the committee will ask questions. The committee will then determine if the dissertation proposal has been accepted. The dissertation proposal can be repeated at most once if the proposal was not accepted.

A dissertation proposal must be approved within two years of becoming a PhD candidate. After approval of the dissertation proposal, the committee may meet to review the progress of the research.

Dissertation Defense

After successfully completing the dissertation proposal, the PhD candidate must conduct the necessary research and publish the results in a PhD dissertation. The dissertation must be submitted to the PhD committee no less than two weeks prior to the scheduled oral defense. The oral presentation by the candidate is open to the public, followed by an unspecified period during which the committee will ask questions. The question-and-answer period is not open to the public. The committee will then determine if the candidate has passed or failed the examination. If not passed, the candidate will be granted one more chance to pass the final defense.

The PhD degree is awarded for original research on a significant Environmental Engineering problem. Graduate students will work closely with individual faculty members to pursue the PhD degree. PhD dissertation research is usually supported by a research grant from a government agency or an industrial contract. Many doctoral students take three to five years of full-time graduate study to complete their degrees.

Program Requirements

Post Bachelor of Science Degree

Required Core Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENVE 660</td>
<td>Chemical Kinetics in Environmental Engineering</td>
<td>3.0</td>
</tr>
<tr>
<td>ENVS 501</td>
<td>Chemistry of the Environment</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Required Statistics Course

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 640</td>
<td>Biometry</td>
</tr>
<tr>
<td>or BMES 510</td>
<td>Biomedical Statistics</td>
</tr>
<tr>
<td>or ENVE 750</td>
<td>Data-based Engineering Modeling</td>
</tr>
<tr>
<td>or ENV 506</td>
<td>Biostatistics</td>
</tr>
</tbody>
</table>

Required Environmental Policy Course

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVE 564</td>
<td>Sustainable Water Resource Engineering</td>
</tr>
<tr>
<td>or ECON 616</td>
<td>Public Finance and Cost Benefit Analysis</td>
</tr>
<tr>
<td>or PLCY 503</td>
<td>Theory and Practice of Policy Analysis</td>
</tr>
<tr>
<td>or PLCY 504</td>
<td>Methods of Policy Analysis</td>
</tr>
</tbody>
</table>

Required Life Science Course

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENVE 516</td>
<td>Fundamentals of Environmental Biotechnology</td>
</tr>
<tr>
<td>or ENV 511</td>
<td>Evolutionary Ecology</td>
</tr>
<tr>
<td>or ENV 530</td>
<td>Aquatic Ecology</td>
</tr>
</tbody>
</table>

Technical Elective Requirements

To be determined by the PhD faculty advisor and approved by the graduate advisor

500+ level courses in AE, CIVE, ENVE, ENV 550, PLCY or other courses approved by the graduate advisor

Research Requirements

Please note that the number of research credits may be reduced based on the number of Technical Electives that are required.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVE 997</td>
<td>Research</td>
</tr>
</tbody>
</table>
Sample Plan of Study

Upon entering the PhD program, each student will be assigned an academic advisor, and with the help of the advisor will develop and file a plan of study (which can be brought up to date when necessary). The plan of study should be filed with the graduate advisor and uploaded to the E-Forms system no later than the end of the first term. The Eforms (https://gradcollege.irt.drexel.edu/) system will be used to track program progression and milestones. Sample Plans of Study are presented below:

Post Bachelor of Science Degree

First Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credits</th>
<th>Winter</th>
<th>Credits</th>
<th>Spring</th>
<th>Credits</th>
<th>Summer</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENVE 516</td>
<td>3.0</td>
<td>ENVE 660</td>
<td>3.0</td>
<td>CIVE 564</td>
<td>3.0</td>
<td>Vacation</td>
<td>0.0</td>
</tr>
<tr>
<td>ENVE 750</td>
<td>3.0</td>
<td>Technical Electives</td>
<td>6.0</td>
<td>Technical Electives</td>
<td>6.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENVS 501</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credits</th>
<th>Winter</th>
<th>Credits</th>
<th>Spring</th>
<th>Credits</th>
<th>Summer</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVE 997</td>
<td>6.0</td>
<td>CIVE 997</td>
<td>6.0</td>
<td>CIVE 997</td>
<td>9.0</td>
<td>Vacation</td>
<td>0.0</td>
</tr>
<tr>
<td>Technical Electives</td>
<td>3.0</td>
<td>Technical Electives</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credits</th>
<th>Winter</th>
<th>Credits</th>
<th>Spring</th>
<th>Credits</th>
<th>Summer</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVE 997</td>
<td>9.0</td>
<td>CIVE 997</td>
<td>9.0</td>
<td>CIVE 997</td>
<td>9.0</td>
<td>Vacation</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credits</th>
<th>Winter</th>
<th>Credits</th>
<th>Spring</th>
<th>Credits</th>
<th>Summer</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVE 997</td>
<td>6.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIVE 998</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Credits 90

Post Master of Science Degree

First Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credits</th>
<th>Winter</th>
<th>Credits</th>
<th>Spring</th>
<th>Credits</th>
<th>Summer</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVE 997</td>
<td>3.0</td>
<td>CIVE 997</td>
<td>3.0</td>
<td>CIVE 997</td>
<td>3.0</td>
<td>Vacation</td>
<td>0.0</td>
</tr>
<tr>
<td>Technical Electives</td>
<td>6.0</td>
<td>Technical Electives</td>
<td>6.0</td>
<td>Technical Electives</td>
<td>6.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credits</th>
<th>Winter</th>
<th>Credits</th>
<th>Spring</th>
<th>Credits</th>
<th>Summer</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVE 997</td>
<td>9.0</td>
<td>CIVE 997</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIVE 998</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Credits 45

Facilities

The Department of Civil, Architectural, and Environmental Engineering is well equipped with state-of-the-art facilities:
• Analytical instrumentation for measuring biological and chemical contaminants in air, water and land
• Field sampling equipment for water and air measurements
• Molecular biology capability
• Computational facilities including access to multi-processor clusters, and advanced simulation and data analysis software

Civil, Architectural and Environmental Engineering Faculty

Abieyuwa Aghayere, PhD (University of Alberta). Professor. Structural design - concrete, steel and wood; structural failure analysis; retrofitting of existing structures; new structural systems and materials; engineering education.

Ivan Bartoli, PhD (University of California, San Diego). Associate Professor. Non-destructive evaluation and structural health monitoring; dynamic identification, stress wave propagation modeling.

Shannon Capps, PhD (Georgia Institute of Technology). Associate Professor. Atmospheric chemistry; data assimilation; advanced sensitivity analysis; inverse modeling.

S.C. Jonathan Cheng, PhD (West Virginia University). Associate Professor. Soil mechanics; geosynthetics; geotechnical engineering; probabilistic design; landfill containments; engineering education.

Yaghoob (Amir) Farnam, PhD (Purdue University). Associate Professor. Advanced and sustainable infrastructure materials; multifunctional, self-responsive and bioinspired construction materials; advanced multiscale manufacturing; characterization, and evaluation of construction materials; durability of cement-based materials.

Patricia Gallagher, PhD (Virginia Polytechnic Institute and State University). Professor. Geotechnical and geoenvironmental engineering; soil improvement; soil improvement; recycled materials in geotechnics.

Patrick Gurian, PhD (Carnegie-Mellon University). Professor. Risk analysis of environmental and infrastructure systems; novel adsorbent materials; environmental standard setting; Bayesian statistical modeling; community outreach and environmental health.

Charles N. Haas, PhD (University of Illinois, Urbana-Champaign) Program Head for Environmental Engineering; L. D. Betz Professor of Environmental Engineering. Water treatment; risk assessment; bioterrorism; environmental modeling and statistics; microbiology; environmental health.

Simi Hoque, PhD (University of California - Berkeley) Program Head for Architectural Engineering. Professor. Computational methods to reduce building energy and environmental impacts, urban metabolism, thermal comfort, climate resilience.

Y. Grace Hsuan, PhD (Imperial College). Professor. Durability of polymeric construction materials; advanced construction materials; and performance of geosynthetics.

Joseph B. Hughes, PhD (University of Iowa). Distinguished University Professor. Biological processes and applications of nanotechnology in environmental systems.

L. James Lo, PhD (University of Texas at Austin). Associate Professor. Architectural fluid mechanics; building automation and autonomy; implementation of natural and hybrid ventilation in buildings; airflow distribution in buildings; large-scale air movement in an urban built environment; building and urban informatics; data-enhanced sensing and control for optimal building operation and management; novel data gathering methods for building/urban problem solving; interdisciplinary research on occupant behaviors in the built environment.

Franco Montalto, PhD (Cornell University). Professor. Effects of built infrastructure on societal water needs, ecohydrologic patterns and processes, ecological restoration, green design, and water interventions.

Mira S. Olson, PhD (University of Virginia). Associate Professor. Peace engineering; source water quality protection and management; contaminant and bacterial fate and transport; community engagement.

Miguel A. Pando, PhD (Virginia Polytechnic Institute and State University). Associate Professor. Laboratory testing of geomaterials; geotechnical aspects of natural hazards; soil-structure-interaction; geotechnical engineering.

Matthew Reichenbach, PhD (University of Austin at Texas). Assistant Teaching Professor. Design and behavior of steel structures, bridge engineering, structural stability

Michael Ryan, PhD (Drexel University) Associate Department Head of Graduate Studies. Associate Teaching Professor. Microbial Source Tracking (MST); Quantitative Microbial Risk Assessment (QMRA); dynamic engineering systems modeling; molecular microbial biology; phylogenetics; metagenomics; bioinformatics; environmental statistics; engineering economics; microbiology; potable and wastewater quality; environmental management systems.
Christopher Sales, PhD (University of California, Berkeley). Associate Professor. Environmental microbiology and biotechnology; biodegradation of environmental contaminants; microbial processes for energy and resource recovery from waste; application of molecular biology, analytical chemistry and bioinformatic techniques to study environmental biological systems.

Robert Swan Teaching Professor. Geotechnical and geosynthetic engineering; soil/geosynthetic interaction and performance; laboratory and field geotechnical/geosynthetic testing.

Sharon Walker, PhD (Yale University) Dean, College of Engineering. Distinguished Professor. Water quality systems engineering

Michael Waring, PhD (University of Texas at Austin) Department Head, Civil, Architectural, and Environmental Engineering. Associate Professor. Indoor air quality and building sustainability; indoor particulate matter fate and transport; indoor chemistry and particle formation; secondary impacts of control technologies and strategies.

Jin Wen, PhD (University of Iowa). Professor. Architectural engineering; Building Energy Efficiency; Intelligent Building; Net-zero Building; and Indoor Air Quality.

Aspasia Zerva, PhD (University of Illinois, Urbana-Champaign). Professor. Earthquake engineering; mechanics; seismology; structural reliability; system identification; advanced computational methods in structural analysis.

Emeritus Faculty
A. Emin Aktan, PhD (University of Illinois, Urbana-Champaign). Professor Emeritus. Health monitoring and management of large infrastructures with emphasis on health monitoring.

Eugenia Ellis, PhD, AIA (Virginia Polytechnic Institute and State University). Professor Emerita. Natural and electrical light sources and effects on biological rhythms and health outcomes; ecological strategies for smart, sustainable buildings of the nexus of health, energy, and technology.

Ahmad Hamid, PhD (McMaster University). Professor Emeritus. Engineered masonry; seismic behavior, design and retrofit of masonry structures; development of new materials and building systems.

Harry G. Harris, PhD (Cornell University). Professor Emeritus. Structural models; dynamics of structures, plates and shells; industrialized building construction.

Joseph P. Martin, PhD (Colorado State University). Professor Emeritus. Geotechnical and geoenvironmental engineering; hydrology; transportation; waste management.

James E. Mitchell, MArch (University of Pennsylvania). Professor Emeritus. Architectural engineering design; building systems; engineering education.

Joseph V. Mullin, PhD (Pennsylvania State University). Teaching Professor Emeritus. Structural engineering; failure analysis; experimental stress analysis; construction materials; marine structures.

Machine Learning Engineering

Major: Machine Learning Engineering
Degree Awarded: Master of Science in Machine Learning Engineering (MSMLE)
Calendar Type: Quarter
Minimum Required Credits: 45.0
Co-op Option: Available for full-time, on-campus master’s-level students
Classification of Instructional Programs (CIP) code: 54.0903
Standard Occupational Classification (SOC) code: 15-1132

About the Program
The MS in Machine Learning is designed to provide students with a strong academic background in machine learning and prepare them for a career as a machine learning engineer or similar position. Using a curriculum based on core machine learning topics, aligned mathematical theory, and signal processing, this graduate program provides a solid mathematical and theoretical understanding of how machine learning algorithms are designed, implemented, and applied to practical problems. Students will gain the ability to implement machine learning systems using standard programming languages, software frameworks, and systems both as an individual and as a member of a development team.

Students are also encouraged to engage in thesis research. The combined thesis and research cannot exceed 9.0 credits. The MS program is organized so that a student may complete the degree requirements in less than 2 years of full-time study or 2-3 years of part-time study.

Students within the Master of Science in Machine Learning Engineering are eligible to take part in the Graduate Co-op Program, which combines classroom coursework with a 6-month, full-time work experience. For more information, visit the Steinbright Career Development Center’s website (https://nam10.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.drexel.edu%2Fsccd%2Fco-op%2Fgraduate%2F&data=04%7C01%7Cj976%40drexel.edu
Additional Information
For more information about the MS in Machine Learning Engineering, please visit the Department of Electrical and Computer Engineering (https://drexel.edu/engineering/academics/departments/electrical-computer-engineering/) website.

Admission Requirements
Applicants must satisfy general requirements for graduate admission including a minimum 3.0 GPA (on a 4.0 scale) for the last two years of undergraduate studies, as well as for any subsequent graduate work. Students will be required to hold a BS in electrical engineering, computer engineering, or computer science; or a bachelor’s degree in an aligned area (e.g. statistics, neuroscience, etc.) in addition to an appropriate technical background which will be reviewed during the admissions process.

Full-time applicants are encouraged to take the GRE exam. Students who do not hold a degree from a US institution must take the TOEFL or IELTS exam within two years of application submission.

Degree Requirements

<table>
<thead>
<tr>
<th>Core Courses</th>
<th>12.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 610</td>
<td>Machine Learning & Artificial Intelligence</td>
</tr>
<tr>
<td>ECE 612</td>
<td>Applied Machine Learning Engineering</td>
</tr>
<tr>
<td>ECE 687</td>
<td>Pattern Recognition</td>
</tr>
<tr>
<td>ECES 521</td>
<td>Probability & Random Variables</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aligned Mathematical Theory</th>
<th>6.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECES 522</td>
<td>Random Process & Spectral Analysis</td>
</tr>
<tr>
<td>ECES 523</td>
<td>Detection & Estimation Theory</td>
</tr>
<tr>
<td>ECES 811</td>
<td>Optimization Methods for Engineering Design</td>
</tr>
<tr>
<td>ECET 602</td>
<td>Information Theory and Coding</td>
</tr>
<tr>
<td>MATH 504</td>
<td>Linear Algebra & Matrix Analysis</td>
</tr>
<tr>
<td>MATH 510</td>
<td>Applied Probability and Statistics I</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Applications</th>
<th>3.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 686</td>
<td>Cell & Tissue Image Analysis</td>
</tr>
<tr>
<td>ECES 620</td>
<td>Multimedia Forensics and Security</td>
</tr>
<tr>
<td>ECES 641</td>
<td>Bioinformatics</td>
</tr>
<tr>
<td>ECES 650</td>
<td>Statistical Analysis of Genomics</td>
</tr>
<tr>
<td>ECES 660</td>
<td>Machine Listening and Music IR</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Signal Processing</th>
<th>3.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECES 631</td>
<td>Fundamentals of Deterministic Digital Signal Processing</td>
</tr>
<tr>
<td>ECES 681</td>
<td>Fundamentals of Computer Vision</td>
</tr>
<tr>
<td>ECES 682</td>
<td>Fundamentals of Image Processing</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Engineering Electives</th>
<th>9.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Choose any 3 graduate-level courses from the College of Engineering</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transformational Electives</th>
<th>6.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Choose 2 elective courses that promote the development of leadership, communication, and ethics</td>
<td></td>
</tr>
<tr>
<td>COM 610</td>
<td>Theories of Communication and Persuasion</td>
</tr>
<tr>
<td>EDGI 510</td>
<td>Culture, Society & Education in Comparative Perspective</td>
</tr>
<tr>
<td>EDGI 522</td>
<td>Education for Global Citizenship, Sustainability, and Social Justice</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mastery (Thesis and Non-Thesis Option)</th>
<th>6.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 898</td>
<td>Master's Thesis</td>
</tr>
</tbody>
</table>

Total Credits | 45.0 |

* Thesis Option: A minimum of two terms of laboratory-based research that leads to a publicly defended MS thesis. Students will be advised by a faculty member, and when applicable, a representative of industry or government sponsor.
Non-thesis Option: In lieu of research and thesis, students will complete six additional credits of coursework from the Mathematical Theory, Applications, or Signal Processing area.
Sample Plan of Study

Thesis Option

First Year

<table>
<thead>
<tr>
<th></th>
<th>Fall Credits</th>
<th>Winter Credits</th>
<th>Spring Credits</th>
<th>Summer Credits</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 687</td>
<td>3.0 ECE 612</td>
<td>3.0 ECE 610</td>
<td></td>
<td>3.0 VACATION</td>
<td></td>
</tr>
<tr>
<td>ECES 521</td>
<td></td>
<td>3.0 Aligned Mathematical Theory courses</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signal Processing course</td>
<td>3.0</td>
<td></td>
<td>6.0 Applications course</td>
<td></td>
<td>3.0</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th></th>
<th>Fall Credits</th>
<th>Winter Credits</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 898</td>
<td>3.0 ECE 898</td>
<td></td>
<td>3.0</td>
</tr>
<tr>
<td>Engineering elective</td>
<td>3.0 Engineering elective</td>
<td></td>
<td>3.0</td>
</tr>
<tr>
<td>Transformational elective</td>
<td>3.0 Transformational elective</td>
<td></td>
<td>3.0</td>
</tr>
</tbody>
</table>

Total Credits 45

Non-Thesis Option

First Year

<table>
<thead>
<tr>
<th></th>
<th>Fall Credits</th>
<th>Winter Credits</th>
<th>Spring Credits</th>
<th>Summer Credits</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 687</td>
<td>3.0 ECE 612</td>
<td>3.0 ECE 610</td>
<td></td>
<td>3.0 VACATION</td>
<td></td>
</tr>
<tr>
<td>ECES 521</td>
<td></td>
<td>3.0 Aligned Mathematical Theory courses</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signal Processing course</td>
<td>3.0</td>
<td></td>
<td>6.0 Applications course</td>
<td></td>
<td>3.0</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th></th>
<th>Credits Winter</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aligned Mathematical Theory, Applications, or Signal Processing</td>
<td>3.0 Aligned Mathematical Theory, Applications, or Signal Processing</td>
<td>3.0</td>
</tr>
<tr>
<td>Engineering elective</td>
<td>3.0 Engineering elective</td>
<td></td>
</tr>
<tr>
<td>Transformational elective</td>
<td>3.0 Transformational elective</td>
<td></td>
</tr>
</tbody>
</table>

Total Credits 45

Materials Science and Engineering

Major: Materials Science and Engineering
Degree Awarded: Master of Science (MS)
Calendar Type: Quarter
Minimum Required Credits: 45.0
Co-op Option: Available for full-time, on-campus master's-level students
Classification of Instructional Programs (CIP) code: 14.1801
Standard Occupational Classification (SOC) code: 17-2131

About the Program

The graduate master of science (MS) program in Materials Science and Engineering (MSE) aims to provide an education which encompasses both the breadth and depth of the most recent knowledge base in the materials science and engineering fields in a format suitable for individuals seeking careers in academia and/or industry. In addition, the program provides students with research training through research credits and/or thesis research.

The graduate student body reflects a broad spectrum of undergraduate backgrounds. Because of the expansion into interdisciplinary areas, qualified physical and biological science, and other engineering program graduates may also join the program. Students without an undergraduate degree in Materials Science and Engineering (MSE) are required to take MATE 503 *Introduction to Materials Engineering*.

The MS program in Materials Science and Engineering (MSE) is offered both on a regular full-time and on a part-time basis.
Career Opportunities

Graduates go on to careers in engineering firms, consulting firms, law firms, private industry, business, research laboratories, academia, and national laboratories. Materials scientists and engineers find employment in such organizations as Hewlett-Packard, Boeing, Intel, 3M, Global Foundries, Chemours, Lockheed-Martin, Johnson and Johnson, Merck, AstraZeneca, Arkema, W.L. Gore, Army Research Laboratory, Los Alamos National Laboratory, Air Products, Micron, Motorola, and Corning.

Additional Information

For more information about Materials Science and Engineering, visit the Department of Materials Science and Engineering (https://drexel.edu/engineering/academics/departments/materials-science-engineering/) webpage.

Admission Requirements

Applicants must meet the graduate requirements for admission to Drexel University. The graduate student body reflects a broad spectrum of undergraduate backgrounds. Because of the expansion into interdisciplinary areas, qualified non-MSE engineering, physical, and biological science graduates may also join the program.

For specific information on how to apply to this program, visit Drexel University’s Materials Science and Engineering Graduate Admissions (http://www.drexel.edu/grad/programs/coe/materials-science-engineering/) webpage.

Degree Requirements

The 45.0 quarter credits required for the MS degree include two required core courses on MATE 510 Thermodynamics of Solids and MATE 512 Introduction to Solid State Materials. Students choose four additional selected core courses.

Thesis Options

Students pursuing the thesis option are required to undertake a 9.0 credit thesis on a topic of materials research supervised by a faculty member. Alternatively, MS students can select the non-thesis option, in which case the thesis may be replaced by 9.0 credits of coursework.

All students in the thesis option are required to propose an advisor-supported research thesis topic during their first year. Students are urged to make a choice of topic as early as possible and to choose appropriate graduate courses in consultation with their advisor.

The program is organized so that part-time students may complete the degree requirements in two to four years. Full-time students may complete the program in two years.

There is no general exam required for MS students. If an MS student wishes to continue for a PhD, then the student must apply and be admitted to the PhD program. (There is no guarantee that an MS student will be admitted to the PhD program.)

Materials Science and Engineering (MSMSE) Core Courses

<table>
<thead>
<tr>
<th>Required core courses:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MATE 510 Thermodynamics of Solids</td>
<td>3.0</td>
</tr>
<tr>
<td>MATE 512 Introduction to Solid State Materials</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Four additional Selected Core (SC) courses from the following: 12.0

<table>
<thead>
<tr>
<th>MATE 501 Structure and Properties of Polymers</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MATE 507 Kinetics</td>
<td></td>
</tr>
<tr>
<td>MATE 515 Experimental Technique in Materials</td>
<td></td>
</tr>
<tr>
<td>MATE 535 Numerical Engineering Methods</td>
<td></td>
</tr>
<tr>
<td>MATE 563 Ceramics</td>
<td></td>
</tr>
<tr>
<td>MATE 610 Mechanical Behavior of Solids</td>
<td></td>
</tr>
<tr>
<td>MATE 661 Biomedical Materials I</td>
<td></td>
</tr>
</tbody>
</table>

Any additional related courses if approved by the graduate advisor.

Technical Electives* 18.0

Thesis and Alternatives 9.0

9.0 credits MATE 898 (MS thesis) or 9.0 credits of Technical Electives (TE).

Total Credits 45.0

* Of the 18.0 technical elective credits, which may include up to 6.0 credits of MATE 897, at least 9.0 credits must be taken as Materials Science and Engineering (MATE) courses, while the rest may be taken within the College of Engineering, College of Arts and Sciences, or at other colleges if consistent with the student’s plan of study (and given advance written approval by their advisor). At least 9.0 of these 18.0 technical electives must be exclusive of independent study courses or research credits.

Any graduate-level course in a STEM field (Engineering, Physical Sciences, or Computing/Data), as approved by the MSE Graduate Advisor, excluding MATE 536 (Materials Seminar), MATE 503 (Introduction to Materials Engineering) and MATE 504 (Art of Being a Scientist).
Sample Plan of Study

First Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credits</th>
<th>Winter</th>
<th>Credits</th>
<th>Spring</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATE Selected Core Course</td>
<td>3.0</td>
<td>MATE 510</td>
<td>3.0</td>
<td>MATE Selected Core Course</td>
<td>3.0</td>
</tr>
<tr>
<td>MATE Technical Elective</td>
<td>3.0</td>
<td>MATE 512</td>
<td>3.0</td>
<td>MATE Selected Core Course</td>
<td>3.0</td>
</tr>
<tr>
<td>MATE Technical Elective</td>
<td>3.0</td>
<td>MATE Technical Elective</td>
<td>3.0</td>
<td>Technical Elective</td>
<td>3.0</td>
</tr>
<tr>
<td>MATE Technical Elective</td>
<td>3.0</td>
<td>Technical Elective</td>
<td>3.0</td>
<td>Technical Elective</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credits</th>
<th>Winter</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATE 898 or TECHNICAL ELECTIVE</td>
<td>3.0</td>
<td>MATE 898 or TECHNICAL ELECTIVE</td>
<td>6.0</td>
</tr>
<tr>
<td>Technical Elective</td>
<td>3.0</td>
<td>MATE Selected Core Course</td>
<td>3.0</td>
</tr>
<tr>
<td>Technical Elective</td>
<td>3.0</td>
<td>Technical Elective</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Total Credits 45

Facilities

Biomaterials and Biosurfaces Laboratory
This laboratory contains 10 kN biaxial and 5 kN uniaxial servo-hydraulic mechanical testing machines, a Fluoroscan X-ray system, a microscopic imaging system, a spectra fluorometer, a table autoclave, centrifuge, vacuum oven, CO2 incubators, biological safety cabinet, thermostatic water baths, precision balance, and ultrasonic sterilizer.

Nanobiomaterials and Cell Engineering Laboratory
This laboratory contains fume hood with vacuum/gas dual manifold, vacuum pump and rotary evaporator for general organic/polymer synthesis; gel electrophoresis and electroblotting for protein characterization; bath sonicator, glass homogenizer and mini-extruder for nanoparticle preparation; centrifuge; ultrapure water conditioning system; precision balance; and pH meter and shaker.

Ceramics Processing Laboratory
This laboratory contains a photo-resist spinner, impedance analyzer, Zeta potential meter, spectrofluorometer, piezoelectric d33 meter, wire-bonder, and laser displacement meter.

MAX Phase Ceramics Processing Laboratory
This laboratory contains a vacuum hot-press; cold isostatic press (CIP) and hot isostatic press (HIP) for materials consolidation and synthesis; precision dilatometer; laser scattering particle size analyzer; impedance analyzer, creep testers, and assorted high temperature furnaces.

Mechanical Testing Laboratory
This laboratory contains mechanical and closed-loop servo-hydraulic testing machines, hardness testers, impact testers, equipment for fatigue testing, metallurgical preparation facilities, and a rolling mill with twin 6" diameter rolls.

Mesoscale Materials Laboratory
This laboratory contains instrumentation for growth, characterization, device fabrication, and design and simulation of electronic, dielectric, ferroelectric, and photonic materials. Resources include physical and chemical vapor deposition and thermal and plasma processing of thin films, including oxides and metals, and semiconductor nanowire growth. Facilities include pulsed laser deposition, atomic layer deposition, chemical vapor deposition, sublimation growth, and resistive thermal evaporation. Variable-temperature high-vacuum probe station and optical cryostats including high magnetic field, fixed and tunable-wavelength laser sources, several monochromators for luminescence and Raman scattering spectrosopies, scanning electron microscopy with electron beam lithography, and a scanning probe microscope.

Nanomaterials Laboratory
This laboratory contains instrumentation for testing and manipulation of materials under microscope, high-temperature autoclaves, Sievert’s apparatus; glove-box; high-temperature vacuum and other furnaces for the synthesis of nano-carbon coatings and nanotubes; and electro-spinning system for producing nano-fibers.

Oxide Films and Interfaces Laboratory
This laboratory contains an oxide molecular beam epitaxy (MBE) thin film deposition system; physical properties measurement system for electronic transport and magnetometry measurements from 2 – 400K, up to 9 T fields; and 2 tube furnaces.

Powder Processing Laboratory
This laboratory contains vee blenders, ball-mills, sieve shaker and sieves for powder classification, several furnaces (including one with controlled atmosphere capability); and a 60-ton Baldwin press for powder compaction.

Soft Matter Research and Polymer Processing Laboratories
These laboratories contain computerized thermal analysis facilities including differential scanning calorimeters (DSC), dynamic mechanical analyzer (DMA), and thermo-gravimetric analyzer (TGA); single-fiber tensile tester; strip biaxial tensile tester; vacuum evaporator; spincoater; centrifuge; optical
microscope with hot stage; liquid crystal tester; microbalance; ultrasonic cleaner; laser holographic fabrication system; polymer injection molder and single screw extruder.

Natural Polymers and Photonics Laboratory
This laboratory contains a spectroscopic ellipsometer for film characterization; high purity liquid chromatography (HPLC) system; lyophilizer; centrifuge; refractometer; and electro-spinning system for producing nano-fibers.

X-ray Tomography Laboratory
This laboratory contains a high resolution X-ray tomography instrument and a cluster of computers for 3-D microstructure reconstruction; mechanical stage, a positioning stage, and a cryostage for in-situ testing.

Materials Characterization Core Facility
The Department of Materials Science & Engineering relies on Materials Characterization Core facility within the University for materials characterization and micro- and nano-fabrication. These facilities contain state-of-the-art materials characterization instruments, including environmental and variable pressure field-emission scanning electron microscopes with Energy Dispersive Spectroscopy (EDS) for elemental analysis and Orientation Image Microscopy (OIM) for texture analysis; a Transmission Electron Microscope (TEM) with STEM capability and TEM sample preparation equipment; a dual beam focused ion beam (FIB) system for nano-characterization and nano fabrication; a femtosecond/ terahertz laser Raman spectrometer; visible and ultraviolet Raman micro spectrometers with a total of 7 excitation wavelengths for non-destructive chemical and structural analysis and Surface Enhanced Raman (SERS); a Nanoindenter; an X-ray Photoelectron Spectrometer (XPS)/Electron Spectroscopy for Chemical Analysis (ESCA) system; and X-Ray Diffractometers (XRD), including small angle/wide angle X-Ray scattering (SAX/WAX).

More details of these instruments, information on how to access them, and instrument usage rates can be found on the Core Facilities webpage (http://crf.coe.drexel.edu/).

Materials Science and Engineering Faculty

Michel Barsoum, PhD (Massachusetts Institute of Technology). Distinguished Professor. Processing and characterization of novel ceramics and ternary compounds, especially the MAX and 2-D MXene phases.

Hao Cheng, PhD (Northwestern University). Associate Professor. Drug delivery, molecular self-assembly, cell-nanomaterial interactions, regenerative medicine and cell membrane engineering.

Yury Gogotsi, PhD (Kiev Polytechnic Institute) Director, A. J. Drexel Nanotechnology Institute. Distinguished University & Charles T. and Ruth M. Bach Professor. Nanomaterials; carbon nanotubes; nanodiamond; graphene; MXene; materials for energy storage, supercapacitors, and batteries.

Yong-Jie Hu, PhD (Penn State University). Assistant Professor. Computational design and evaluation of mechanical, thermodynamic, and electronic properties using first-principles calculations, molecular dynamic simulations, the CALPHAD approach, multiscale modeling, and machine learning approaches.

Richard Knight, PhD (Loughborough University) Associate Department Head and Undergraduate Advisor. Teaching Professor. Thermal plasma technology; thermal spray coatings and education; plasma chemistry and synthesis.

Christopher Y. Li, PhD (University of Akron) Graduate Advisor. Professor. Soft and hybrid materials for optical, energy, and bio applications; polymeric materials, nanocomposites, structure and properties.

Andrew Magenau, PhD (University of Southern Mississippi). Assistant Professor. Structurally complex materials exhibiting unique physical properties designed and fabricated using an assortment of methodologies involving directed self-assembly, externally applied stimuli, structure-function correlation, and applied engineering principles suited for technologies in regenerative medicine, biological interfacing, catalytic, electronic, and optical applications.

Michele Marcolongo, PhD, PE (University of Pennsylvania). Professor Emerita. Orthopedic biomaterials; acellular regenerative medicine, biomimetic proteoglycans; hydrogels.

Steven May, PhD (Northwestern University) Department Head. Professor. Synthesis of complex oxide films, superlattices, and devices; magnetic, electronic, and quantum materials; x-ray and neutron scattering.

Ekaterina Pomerantseva, PhD (Moscow State University, Russia). Associate Professor. Solid state chemistry; electrochemical characterization, lithium-ion batteries, energy generation and storage; development and characterization of novel nanostructured materials, systems and architectures for batteries, supercapacitors and fuel cells.

Caroline L. Schauer, PhD (SUNY Stony Brook) Associate Dean, Faculty Affairs College of Engineering. Professor. Polysaccharide thin films and nanofibers.

Wei-Heng Shih, PhD (Ohio State University). Professor. Colloidal ceramics and sol-gel processing; piezoelectric biosensors, optoelectronics, and energy harvesting devices; nanocrystalline quantum dots for bioimaging, lighting, and solar cells.
Jonathan E. Spanier, PhD (Columbia University) Department Head, Mechanical Engineering and Mechanics. Professor. Light-matter interactions in electronic materials, including ferroelectric semiconductors, complex oxide thin film science; laser spectroscopy, including Raman scattering.

Jörn Venderbos, PhD (Leiden University). Assistant Professor. Theory of quantum materials: topological Insulators, topological semimetals, materials prediction and design, strongly correlated electron materials, complex electronic ordering phenomena, unconventional superconductors

Christopher Weyant, PhD (Northwestern University). Teaching Professor. Engineering education

Antonios Zavaliangos, PhD (Massachusetts Institute of Technology) A.W. Grosvenor Professor. Professor. Constitutive modeling; powder compaction and sintering; pharmaceutical tableting, X-ray tomography.

Emeritus Faculty

Roger D. Cornelissen, PhD (University of Chicago). Professor Emeritus. Fracture, blends and alloys, as well as compounding.

Ihab L. Kamel, PhD (University of Maryland). Professor Emeritus. Nanotechnology, polymers, composites, biomedical applications, and materials-induced changes through plasma and high energy radiation.

Jack Keeverian, PhD (Massachusetts Institute of Technology). Professor Emeritus. Rapid parts manufacturing, computer integrated manufacturing systems, strip production systems, technical and/or economic modeling, melting and casting systems, recycling systems.

Materials Science and Engineering PhD

Major: Materials Science and Engineering
Degree Awarded: Doctor of Philosophy (PhD)
Calendar Type: Quarter
Minimum Required Credits: 90.0
Co-op Option: None
Classification of Instructional Programs (CIP) code: 14.1801
Standard Occupational Classification (SOC) code: 17-2131

About the Program

The PhD program in Materials Science and Engineering (MSE) aims to provide an education which encompasses both the breadth and depth of the most recent knowledge base in the materials science and engineering fields in a format suitable for individuals seeking careers in academia and/or industry.

In addition, the program provides students with in-depth research training through their thesis project.

The graduate student body reflects a broad spectrum of undergraduate backgrounds. Because of the expansion into interdisciplinary areas, qualified physical and biological science graduates, and graduates from other engineering disciplines may also join the program. Students without a degree in Materials Science and Engineering (MSE) are required to take MATE 503 Introduction to Materials Engineering.

Career Opportunities

PhD program graduates go on to careers in engineering firms, consulting firms, law firms, private industry, business, research laboratories, academia, and national laboratories. Materials scientists and engineers find employment in such organizations as Hewlett-Packard, Intel, 3M, Global Foundries, Chemours, Lockheed-Martin, Johnson and Johnson, Merck, AstraZeneca, Arkema, W. L. Gore, Army Research Laboratory, Los Alamos National Laboratory, Air Products, Micron, and Corning.

Additional Information

For more information about Materials Science and Engineering, visit the Department of Materials Science and Engineering (https://drexel.edu/engineering/academics/departments/materials-science-engineering/) webpage.

Admission Requirements

Applicants must meet the graduate requirements for admission to Drexel University. The graduate student body reflects a broad spectrum of undergraduate backgrounds. Because of the expansion into interdisciplinary areas, qualified non-MSE engineering, physical, and biological science graduates may also join the program.

For specific information on how to apply to this program, visit Drexel University's Materials Science and Engineering Graduate Admissions (http://www.drexel.edu/grad/programs/coe/materials-science-engineering/) webpage.
Degree Requirements

Curriculum

A student must have at least the required 90.0 quarter credits for the PhD degree. An MS degree is not a prerequisite for the PhD degree, but can count for 45.0 quarter credits if the courses are approved by the graduate advisor. For students without an MS degree, but with previous graduate coursework, they may transfer no more than 15.0 credits (equivalent to 12.0 semester credits) from approved institutions provided they follow the rules and regulations described in the Materials Requirements of Graduate Degrees.

The required 90.0 credits for a PhD degree are tabulated below:

- Required core courses: 6.0 credits
- Additional required courses: 7.0 credits (MATE 504 & MATE 536 [1.0 credit for first 6 terms])
- Selected core courses: 12.0 credits
- Optional courses: 9.0 credits
- Research or additional option courses: 47.0 credits
- Dissertation: 9.0 credits (MATE 998)

Total: 90.0 credits

Program Requirements

Required Core Courses:

- MATE 510 Thermodynamics of Solids 3.0
- MATE 512 Introduction to Solid State Materials 3.0

Additional Required Courses:

- MATE 504 The Art of Being a Scientist 2.0
- MATE 536 Materials Seminar Series** 6.0
- MATE 998 Ph.D. Dissertation 9.0

Selected Core (SC) Courses: Choose 4 12.0

- MATE 501 Structure and Properties of Polymers
- MATE 507 Kinetics
- MATE 514 Structure, Symmetry, and Properties of Materials
- MATE 515 Experimental Technique in Materials
- MATE 535 Numerical Engineering Methods
- MATE 563 Ceramics
- MATE 610 Mechanical Behavior of Solids
- MATE 661 Biomedical Materials I

Related MATE courses may be counted as SC as approved by the graduate advisor

MATE Technical Electives (TE): 9.0

- MATE 541 Introduction to Transmission Electron Microscopy and Related Techniques
- MATE 542 Nuclear Fuel Cycle & Materials
- MATE 543 Thermal Spray Technology
- MATE 544 Nanostructured Polymeric Materials
- MATE 572 Materials for High Temperature and Energy
- MATE 576 Recycling of Materials
- MATE 582 Materials for Energy Storage
- MATE 583 Environmental Effects on Materials
- MATE 585 Nanostructured Carbon Materials
- MATE 602 Soft Materials
- MATE 603 Advanced Polymer Characterization
- MATE 604 Principles of Polymerization I
- MATE 702 Natural Polymers
- MATE 7580 Special Topics in MATE

Other MATE courses that may be available
- Out-of-department courses, as approved by the MSE graduate advisor

MATE 897 Research 46.0-140.0

Total Credits 90.0-184.0

Students must successfully pass degree-required exams including final dissertation defense and submission of the final dissertation.

* PhD students must achieve a minimum "B-" grade in each of the required core courses. Waiver of any of the six (6) core courses must be approved by the MSE Department graduate advisor and the student's thesis advisor in advance.
An introductory course, MATE 503, is required for students without an undergraduate materials science and engineering degree.

Additional courses are encouraged for students entering the department with an MS degree. Students choose a doctoral thesis topic after consultation with the faculty. Students are required to consider topics early in the program. An oral thesis presentation and defense are scheduled at the completion of the thesis work.

In addition to the graduate seminar, which is required of all graduate students, doctoral program students must pass an oral candidacy examination and a thesis proposal defense. The exam is designed to improve and assess the communication skills and the analytical abilities of the student. The following procedures should be followed to complete the PhD.

Candidacy Exam Requirement

All MSE PhD students are required to take the PhD Candidacy Examinations administered by the MSE Department.

Additional Information

For more information, visit the Department of Materials Science and Engineering (https://drexel.edu/engineering/academics/departments/materials-science-engineering/) webpage.

Sample Plan of Study

<table>
<thead>
<tr>
<th>First Year</th>
<th>Fall</th>
<th>Credits Winter</th>
<th>Credits Spring</th>
<th>Credits Summer</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATE 504</td>
<td>2.0</td>
<td>MATE 510</td>
<td>3.0 MATE 536</td>
<td>1.0 MATE 897</td>
<td>9.0</td>
</tr>
<tr>
<td>MATE 536</td>
<td>1.0</td>
<td>MATE 536</td>
<td>1.0 MATE 897</td>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td>MATE Selected Core Courses (SC)</td>
<td>6.0</td>
<td>MATE 897</td>
<td>2.0 MATE Selected Core Course (SC)</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>MATE Selected Core Course (SC)</td>
<td></td>
<td></td>
<td></td>
<td>MATE Selected Core Course (SC)</td>
<td>3.0</td>
</tr>
<tr>
<td>MATE Technical Elective Courses (TE)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Second Year</td>
<td>Fall</td>
<td>Credits Winter</td>
<td>Credits Spring</td>
<td>Credits Summer</td>
<td>Credits</td>
</tr>
<tr>
<td>MATE 536</td>
<td>1.0</td>
<td>MATE 512</td>
<td>3.0 MATE 536</td>
<td>1.0 MATE 897</td>
<td>9.0</td>
</tr>
<tr>
<td>MATE 897</td>
<td>2.0</td>
<td>MATE 536</td>
<td>1.0 MATE 897</td>
<td></td>
<td>8.0</td>
</tr>
<tr>
<td>MATE Technical</td>
<td>6.0</td>
<td>MATE 897</td>
<td>5.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective Courses (TE)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Third Year</td>
<td>Fall</td>
<td>Credits Winter</td>
<td>Credits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATE 897</td>
<td>9.0</td>
<td>MATE 998</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Credits</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

At least 90.0 credits are required for the PhD degree, which is based on the completion of a dissertation. Typical PhD students complete between 144.0-216.0 credits in the course of their PhD studies.

Facilities

Biomaterials and Biosurfaces Laboratory

This laboratory contains 10 kN biaxial and 5 kN uniaxial servo-hydraulic mechanical testing machines, a Fluoroscan X-ray system, a microscopic imaging system, a spectra fluorometer, a table autoclave, centrifuge, vacuum oven, CO2 incubators, biological safety cabinet, thermostatic water baths, precision balance, and ultrasonic sterilizer.

Nanobiomaterials and Cell Engineering Laboratory

This laboratory contains fume hood with vacuum/gas dual manifold, vacuum pump and rotary evaporator for general organic/polymer synthesis; gel electrophoresis and electrophotocopy for protein characterization; bath sonicator, glass homogenizer and mini-extruder for nanoparticle preparation; centrifuge; ultrapure water conditioning system; precision balance; and pH meter and shaker.

Ceramics Processing Laboratory

MATE 536 is a 1.0 credit course that must be repeated 6 times.
This laboratory contains a photo-resist spinner, impedance analyzer, Zeta potential meter, spectrofluorometer, piezoelectric d33 meter, wire-bonder, and laser displacement meter.

MAX Phase Ceramics Processing Laboratory
This laboratory contains a vacuum hot-press; cold isostatic press (CIP) and hot isostatic press (HIP) for materials consolidation and synthesis; precision dilatometer; laser scattering particle size analyzer; impedance analyzer, creep testers, and assorted high temperature furnaces.

Mechanical Testing Laboratory
This laboratory contains mechanical and closed-loop servo-hydraulic testing machines, hardness testers, impact testers, equipment for fatigue testing, metallographic preparation facilities, and a rolling mill with twin 6" diameter rolls.

Mesoscale Materials Laboratory
This laboratory contains instrumentation for growth, characterization, device fabrication, and design and simulation of electronic, dielectric, ferroelectric, and photonic materials. Resources include physical and chemical vapor deposition and thermal and plasma processing of thin films, including oxides and metals, and semiconductor nanowire growth. Facilities include pulsed laser deposition, atomic layer deposition, chemical vapor deposition, sublimation growth, and resistive thermal evaporation. Variable-temperature high-vacuum probe station and optical cryostats including high magnetic field, fixed and tunable-wavelength laser sources, several monochromators for luminescence and Raman scattering spectrophotometries, scanning electron microscopy with electron beam lithography, and a scanning probe microscope.

Nanomaterials Laboratory
This laboratory contains instrumentation for testing and manipulation of materials under microscope, high-temperature autoclaves, Sievert’s apparatus; glove-box; high-temperature vacuum and other furnaces for the synthesis of nano-carbon coatings and nanotubes; and electro-spinning system for producing nano-fibers.

Oxide Films and Interfaces Laboratory
This laboratory contains an oxide molecular beam epitaxy (MBE) thin film deposition system; physical properties measurement system for electronic transport and magnetometry measurements from 2 – 400K, up to 9 T fields; and 2 tube furnaces.

Powder Processing Laboratory
This laboratory contains vee blenders, ball-mills, sieve shaker and sieves for powder classification, several furnaces (including one with controlled atmosphere capability); and a 60-ton Baldwin press for powder compaction.

Soft Matter Research and Polymer Processing Laboratories
These laboratories contain computerized thermal analysis facilities including differential scanning calorimeters (DSC), dynamic mechanical analyzer (DMA), and thermo-gravimetric analyzer (TGA); single-fiber tensile tester; strip biaxial tensile tester; vacuum evaporator; spincoater; centrifuge; optical microscope with hot stage; liquid crystal tester; microbalance; ultrasonic cleaner; laser holographic fabrication system; polymer injection molder and single screw extruder.

Natural Polymers and Photonics Laboratory
This laboratory contains a spectroscopic ellipsometer for film characterization; high purity liquid chromatography (HPLC) system; lyophilizer; centrifuge; refractometer; and electro-spinning system for producing nano-fibers.

X-ray Tomography Laboratory
This laboratory contains a high resolution X-ray tomography instrument and a cluster of computers for 3-D microstructure reconstruction; mechanical stage, a positioning stage, and a cryostage for in-situ testing.

Materials Characterization Core Facility
The Department of Materials Science & Engineering relies on Materials Characterization Core facility within the University for materials characterization and micro- and nano-fabrication. These facilities contain state-of-the-art materials characterization instruments, including environmental and variable pressure field-emission scanning electron microscopes with Energy Dispersive Spectroscopy (EDS) for elemental analysis and Orientation Image Microscopy (OIM) for texture analysis; a Transmission Electron Microscope (TEM) with STEM capability and TEM sample preparation equipment; a dual beam focused ion beam (FIB) system for nano-characterization and nano fabrication; a femtosecond/ terahertz laser Raman spectrometer; visible and ultraviolet Raman micro spectrometers with a total of 7 excitation wavelengths for non-destructive chemical and structural analysis and Surface Enhanced Raman (SERS); a Nanoindenter; an X-ray Photoelectron Spectrometer (XPS/Electron Spectroscopy for Chemical Analysis (ESCA) system; and X-Ray Diffractometers (XRD), including small angle/wide angle X-Ray scattering (SAX/WAX).

More details of these instruments, information on how to access them, and instrument usage rates can be found on the Core Facilities webpage (http://crf.coe.drexel.edu/).

Materials Science and Engineering Faculty
Michel Barsoum, PhD (Massachusetts Institute of Technology). Distinguished Professor. Processing and characterization of novel ceramics and ternary compounds, especially the MAX and 2-D MXene phases.
Hao Cheng, PhD (Northwestern University). Associate Professor. Drug delivery, molecular self-assembly, cell-nanomaterial interactions, regenerative medicine and cell membrane engineering.

Yury Gogotsi, PhD (Kiev Polytechnic Institute) Director, A. J. Drexel Nanotechnology Institute. Distinguished University & Charles T. and Ruth M. Bach Professor. Nanomaterials; carbon nanotubes; nanodiamond; graphene; MXene; materials for energy storage, supercapacitors, and batteries.

Yong-Jie Hu, PhD (Penn State University). Assistant Professor. Computational design and evaluation of mechanical, thermodynamic, and electronic properties using first-principles calculations, molecular dynamic simulations, the CALPHAD approach, multiscale modeling, and machine learning approaches.

Richard Knight, PhD (Loughborough University) Associate Department Head and Undergraduate Advisor. Teaching Professor. Thermal plasma technology; thermal spray coatings and education; plasma chemistry and synthesis.

Christopher Y. Li, PhD (University of Akron) Graduate Advisor. Professor. Soft and hybrid materials for optical, energy, and bio applications; polymeric materials, nanocomposites, structure and properties.

Andrew Magenau, PhD (University of Southern Mississippi). Assistant Professor. Structurally complex materials exhibiting unique physical properties designed and fabricated using an assortment of methodologies involving directed self-assembly, externally applied stimuli, structure-function correlation, and applied engineering principles suited for technologies in regenerative medicine, biological interfacing, catalytic, electronic, and optical applications.

Michele Marcolongo, PhD, PE (University of Pennsylvania). Professor Emerita. Orthopedic biomaterials; acellular regenerative medicine, biomimetic proteoglycans; hydrogels.

Steven May, PhD (Northwestern University) Department Head. Professor. Synthesis of complex oxide films, superlattices, and devices; magnetic, electronic, and quantum materials; x-ray and neutron scattering.

Ekaterina Pomerantseva, PhD (Moscow State University, Russia). Associate Professor. Solid state chemistry; electrochemical characterization, lithium-ion batteries, energy generation and storage; development and characterization of novel nanostructured materials, systems and architectures for batteries, supercapacitors and fuel cells.

Caroline L. Schauer, PhD (SUNY Stony Brook) Associate Dean, Faculty Affairs College of Engineering. Professor. Polysaccharide thin films and nanofibers.

Wei-Heng Shih, PhD (Ohio State University). Professor. Colloidal ceramics and sol-gel processing; piezoelectric biosensors, optoelectronics, and energy harvesting devices; nanocrystalline quantum dots for bioimaging, lighting, and solar cells.

Jonathan E. Spanier, PhD (Columbia University) Department Head, Mechanical Engineering and Mechanics. Professor. Light-matter interactions in electronic materials, including ferroelectric semiconductors, complex oxide thin film science; laser spectroscopy, including Raman scattering.

Jörn Venderbos, PhD (Leiden University). Assistant Professor. Theory of quantum materials: topological Insulators, topological semimetals, materials prediction and design, strongly correlated electron materials, complex electronic ordering phenomena, unconventional superconductors.

Christopher Weyant, PhD (Northwestern University). Teaching Professor. Engineering education.

Antonios Zavaliangos, PhD (Massachusetts Institute of Technology) A.W. Grosvenor Professor. Professor. Constitutive modeling; powder compaction and sintering; pharmaceutical tableting, X-ray tomography.

Emeritus Faculty

Roger D. Corneliussen, PhD (University of Chicago). Professor Emeritus. Fracture, blends and alloys, as well as compounding.

Ihab L. Kamel, PhD (University of Maryland). Professor Emeritus. Nanotechnology, polymers, composites, biomedical applications, and materials-induced changes through plasma and high energy radiation.

Jack Keeverian, PhD (Massachusetts Institute of Technology). Professor Emeritus. Rapid parts manufacturing, computer integrated manufacturing systems, strip production systems, technical and/or economic modeling, melting and casting systems, recycling systems.

Mechanical Engineering and Mechanics

Major: Mechanical Engineering and Mechanics
Degree Awarded: Master of Science (MS)
Calendar Type: Quarter
Minimum Required Credits: 45.0
Co-op Option: Available for full-time, on-campus master's-level students
Classification of Instructional (CIP) code: 14.1901
About the Program

The Mechanical Engineering and Mechanics (MEM) Department offers an MS degree. The courses often associate with one or more areas of specialization: design and manufacturing, mechanics, systems and control, and thermal and fluid sciences. The mechanical engineering field is rapidly changing due to ongoing advances in modern science and technology. Effective mechanical engineers must possess expertise in mechanical engineering core subjects, interdisciplinary skills, teamwork skills, as well as entrepreneurial and managerial abilities. The degree programs are designed so students can learn the state-of-the-art knowledge now, and have the foundation to acquire new knowledge as they develop in future.

The MS degree program is offered on both a full-time and a part-time basis. The General (Aptitude) Test of the Graduate Record Examination (GRE) is required for applicants pursuing full-time study. Graduate courses are often scheduled in the late afternoon and evening, so full-time students and part-time students can take the same courses. The department has recently adopted the Graduate Co-op program at the master’s level as an option.

Admission Requirements

Applicants must meet the graduate requirements for admission to Drexel University. Students holding a bachelor’s degree in a science or engineering discipline other than mechanical engineering are advised to take several undergraduate courses as preparation for graduate studies. Though these courses are not counted toward the required credits for the degree, they also must be listed in the student's plan of study. Outstanding students with a GPA of at least 3.5 in their master’s program will be considered for admission to the program leading to the doctor of philosophy degree in mechanical engineering.

Degree Requirements

The MS program has a two-fold mission: to prepare some students for continuation of their graduate studies and research toward a PhD degree, and to prepare other students for a career in industry upon graduation with the MS degree. The MS program has a non-thesis option and a thesis option. Students who plan to continue to the PhD degree are advised to select the thesis-option.

The MS program is structured so that students have the opportunity to specialize in areas of interest while also obtain the broadest engineering education possible. Of the required 45.0 credits (15 courses) MS students are required to complete two core-course sequences (two terms each) from two different core areas. Students can take eight technical elective courses of which up to four courses can be from outside the Mechanical Engineering and Mechanics Department if they are approved in the students’ plan of study. MS students have opportunity to apply to the optional graduate Co-op program. Students in the MS program should consult with the department graduate adviser at the beginning of their program and must file a plan of study prior to the third quarter of study. Further details can be obtained from the department's Graduate Programs Manual.

MSME Program Requirements

Core Courses (select 2 courses in each of 2 Core Areas):

<table>
<thead>
<tr>
<th>Core Area: Mechanics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject Area: Solid Mechanics</td>
</tr>
<tr>
<td>MEM 660 Theory of Elasticity I</td>
</tr>
<tr>
<td>MEM 663 Continuum Mechanics</td>
</tr>
<tr>
<td>Subject Area: Advanced Dynamics</td>
</tr>
<tr>
<td>MEM 666 Advanced Dynamics I</td>
</tr>
<tr>
<td>MEM 667 Advanced Dynamics II</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Core Area: Systems & Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject Area: Robust Control Systems</td>
</tr>
<tr>
<td>MEM 633 Robust Control Systems I</td>
</tr>
<tr>
<td>MEM 634 Robust Control Systems II</td>
</tr>
<tr>
<td>Subject Area: Non-Linear Control Theory</td>
</tr>
<tr>
<td>MEM 636 Theory of Nonlinear Control I</td>
</tr>
<tr>
<td>MEM 637 Theory of Nonlinear Control II</td>
</tr>
<tr>
<td>Subject Area: Real-Time Microcomputer Control</td>
</tr>
<tr>
<td>MEM 639 Real Time Microcomputer Control I</td>
</tr>
<tr>
<td>MEM 640 Real Time Microcomputer Control II</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Core Area: Thermal & Fluid Sciences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject Area: Advanced Thermodynamics</td>
</tr>
<tr>
<td>MEM 601 Statistical Thermodynamics I</td>
</tr>
<tr>
<td>MEM 602 Statistical Thermodynamics II</td>
</tr>
<tr>
<td>Subject Area: Heat Transfer</td>
</tr>
<tr>
<td>MEM 611 Conduction Heat Transfer</td>
</tr>
<tr>
<td>MEM 612 Convection Heat Transfer</td>
</tr>
<tr>
<td>or MEM 613 Radiation Heat Transfer</td>
</tr>
<tr>
<td>Subject Area: Fluid Mechanics</td>
</tr>
</tbody>
</table>

Standard Occupational Classification (SOC) code: 17-2141
MEM 621 Foundations of Fluid Mechanics
MEM 622 Boundary Layers-Laminar & Turbulent

Mathematics Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEM 591</td>
<td>Applied Engr Analy Methods I</td>
</tr>
<tr>
<td>MEM 592</td>
<td>Applied Engr Analy Methods II</td>
</tr>
<tr>
<td>MEM 593</td>
<td>Applied Engr Analy Methods III</td>
</tr>
</tbody>
</table>

Technical Electives (including 9.0 credits for thesis option) 24.0

Total Credits 45.0

* All students take core courses in the department’s areas of specialization as part of a comprehensive and flexible program. Further details can be obtained from the department's Graduate Programs Manual (http://www.drexel.edu/mem/academics/graduate/grad-manual/).

** Consult the Thermal and Fluid Sciences area advisor for other options.

*** Graduate Electives

- Students can take all 8 electives from MEM graduate courses.
- Any MEM graduate course is eligible to serve as electives. This includes those core courses that you do not use as core courses but use as elective courses.
- This also includes MEM I699 Independent Study and Research, and MEM 898 Master’s Thesis.
- If students do not want to take all 8 elective technical courses from MEM, they may take a maximum of 4 non-MEM courses.
- Each non-MEM course to be used as technical elective needs be approved by listing it on the Plan of Study (GR-1 form) and the Graduate Advisor signing the form to approve it.
- To ensure you will receive the MSME degree, please consult with the Graduate Advisor before taking non-MEM graduate courses.
- Graduate courses at the 60- level from these four College of Engineering Departments (CAE, CBE, ECE and MSE) are automatically approved to serve as non-MEM technical elective courses.
- Students may register for MEM I699 Independent Study and Research (3.0 credits per term) to serve as electives, up to 9.0 credits.
- Students on the thesis-option typically register for MEM 898 Master’s Thesis for 3 terms, and they count as 3 elective courses.

Sample Plan of Study

First Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits Winter</th>
<th>Credits Spring</th>
<th>Credits Summer</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEM 591</td>
<td>3.0 MEM 592</td>
<td>3.0 MEM 593</td>
<td>3.0 VACATION</td>
<td></td>
</tr>
<tr>
<td>Core Courses</td>
<td>6.0 Core Courses</td>
<td>6.0 MEM 898</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>Technical Electives</td>
<td></td>
<td></td>
<td></td>
<td>3.0</td>
</tr>
</tbody>
</table>

Total Credits 45

Second Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits Winter</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEM 898</td>
<td>3.0 MEM 898</td>
<td>3.0</td>
</tr>
<tr>
<td>Technical Electives</td>
<td>6.0 Technical Electives</td>
<td>6.0</td>
</tr>
</tbody>
</table>

Total Credits 9

* Students enrolled in the non-thesis master’s program take electives in place of MEM 898.

Facilities

Advanced Design and Manufacturing Laboratory
This laboratory provides research opportunities in design methodology, computer-aided design, analysis and manufacturing, and materials processing and manufacturing. Facilities include various computers and software, I-DEAS, Pro/E, ANSYS, MasterCAM, Mechanical DeskTop, SurfCAM, Euclid, Strim, ABQUS, and more. The machines include two Sanders Model Maker rapid prototyping machines, a BridgePort CNC Machining Center, a BOY 220 injection molding machine, an Electra high-temperature furnace for metal sintering, infiltration, and other heat treatment.

Biofabrication Laboratory
Utilizes cells or biologics as basic building blocks in which biological models, systems, devices and products are manufactured. Biofabrication techniques encompass a broad range of physical, chemical, biological, and/or engineering processes, with various applications in tissue science and engineering, regenerative medicine, disease parthenogenesis and drug testing studies, biochips and biosensors, cell printing, patterning and assembly, and organ printing.
The Biofabrication Lab at Drexel University integrates computer-aided tissue engineering, modern design and manufacturing, biomaterials and biology in modeling, design and biofabrication of tissue scaffolds, tissue constructs, micro-organ, tissue models. The ongoing research focuses on bio-tissue modeling, bio-blueprint modeling, scaffold informatics modeling, biomimetic design of tissue scaffold, additive manufacturing of tissue scaffolds, cell printing and organ printing.

Biological Systems Analysis Laboratory

The research in the Laboratory for Biological Systems Analysis involves the integration of biology with systems level engineering analysis and design, with an emphasis on: (1) the development of robotic systems that borrow from nature’s designs and use novel technologies to achieve superior performance and function; and (2) the use of system identification techniques to evaluate the functional performance of animal physiological systems under natural, behavioral conditions. Facilities include rapid prototyping machines, compliant material manufacturing, mold making facilities, and a traditional machine shop and electronics workshop.

Biomechanics Laboratory

Emphasis in this laboratory is placed on understanding the mechanical properties of human joints, characterization of the mechanical properties of biological materials, studies of human movements, and design and development of artificial limbs. Facilities include a 3-D kinematic measuring system, Instron testing machine, and microcomputers for data acquisition and processing. Additional biomechanical laboratory facilities are available at Moss Rehab Hospital.

Combustion Diagnostics Laboratory

High-speed cameras, spectrometers, and laser systems are used to conduct research in low temperature hydrocarbon oxidation, cool flames, and plasma-assisted ignition and combustion. Research in optical diagnostic development is conducted in this lab with a specific focus on tools to measure small peroxy radicals.

Combustion, Fuel Chemistry, and Emissions Laboratory

Emphasis in this laboratory is placed on developing an understanding of both the chemical and physical factors that control and, hence, can be used to tailor combustion processes for engineering applications. Facilities include two single cylinder research engines, a pressurized flow reactor (PFR) facility, flat flame and slot burner systems, and complete analytical and monitoring instrumentation. The engine systems are used to study the effects of operating variables, fuel type, ambient conditions, and control devices on engine performance and emissions. The PFR facility is used for detailed kinetic studies of hydrocarbon pyrolysis and oxidation processes.

Complex Fluids and Multiphase Transport Laboratory

The research focus of this lab lies at the interface of thermal-fluid sciences, nano materials, and colloid and surface sciences. We apply these fundamental sciences to advance energy conversion and storage systems, to provide effective thermal management solutions, and to enable scalable additive nanomanufacturing. Facilities include materials printing systems, fluorescence microscope and imaging systems, complex fluid characterization, microfluidics and heat transfer testers, coating and solar cell testing devices, electrochemical characterization, and high performance computing facilities.

Dynamic Multifunctional Materials Laboratory

The focus of the Dynamic Multifunctional Materials Laboratory (DMML) is mechanics of materials; namely fracture and failure mechanisms under extreme conditions and their correlation to meso- and microstructural characteristics. Utilizing highly integrated experimental facilities such as a Kolsky (split-Hopkinson pressure bar), single-stage, and two stage light-gas gun, complex material behavior is deconstructed into dominant time and length scales associated with the energetics of damage evolution. In-situ laser and optical diagnostics such as caustics, interferometry techniques, schlieren visualization and virtual grid method, are used to investigate coupled field properties of multifunctional materials with the goal of not only analyzing and understanding behavior, but ultimately tailoring material properties for specific applications.

Electrochemical Energy Systems Laboratory

The Electrochemical Energy Systems Laboratory (ECSL) is specialized in the design, diagnostics and characterization of next generation electrochemical energy conversion and storage systems. Current areas of research include flow-assisted supercapacitors, next generation flow battery technology and fuel cells for transportation, stationary and portable applications. ECSL utilizes a comprehensive approach, including: advanced diagnostics, system design, materials characterization, and computational modeling of electrochemical energy systems. The core mission of ECSL is to develop novel diagnostic and computational tools to understand critical issues in flow-assisted electrochemical systems and enable better system design. Due to the complex nature of these systems, our research is highly interdisciplinary and spans the interface of transport phenomena, materials characterization, electrochemistry and system engineering.

Heat Transfer Laboratory

The heat transfer laboratory is outfitted with an array of instrumentation and equipment for conducting single- and multi-phase heat transfer experiments in controlled environments. Present efforts are studying the heat and mass transfer processes in super-critical fluids and binary refrigerants.

Lab-on-a-Chip and BioMEMS Lab

Develops miniature devices for biological and medical applications using microfabrication and microfluidics technologies. Our research projects have highly multidisciplinary nature and thus require the integration of engineering, science, biology and medicine. Projects are conducted in close collaboration with biologists and medical doctors. Our research methodology includes design and fabrication of miniature devices, experimental characterization, theoretical analysis, and numerical simulation.
Microcomputer Controls Laboratory
This laboratory provides an environment conducive to appreciating aspects of systems and control through hands-on experiments. They range from data acquisition and processing to modeling of dynamical systems and implementing a variety of controllers to control systems, such as DC motors and the inverted pendulum. Active research is being conducted on control reconfiguration in the event of actuator failures in aircrafts.

Multiscale Thermofluidics Laboratory
Develops novel scalable nanomanufacturing techniques using biological templates to manipulate micro- and nano-scale thermal and fluidic phenomena. Current work includes enhancing phase-change heat transfer with super-wetting nanostructured coatings and transport and separation through nanoporous membranes.

Nyheim Plasma Institute
The Nyheim Plasma Institute (NPI) was formed in 2002 (originally the A.J. Drexel Plasma Institute) to stimulate and coordinate research projects related to plasma and other modern high-energy engineering techniques. Today the NPI is an active multidisciplinary organization involving 23 faculty members from 6 engineering departments working in close collaboration with the School of Biomedical Engineering, College of Arts and Sciences, and the College of Nursing and Health Professions.

Precision Instrumentation and Metrology Laboratory
This laboratory is focused on activities related to precision measurement, computer-aided inspection, and precision instrument design. Facilities include 3D Coordinate Measuring Machine (Brown & Sharpe) with Micro Measurement and Reverse engineering software, Surface Profilometer, and Laser Displacement Measuring System.

Space Systems Laboratory
The objective of the Space Systems Laboratory (SSL) is to inspire future generations to advance aerospace engineering. It provides research opportunities in orbital mechanics, rendezvous and docking maneuvers, mission planning, and space environment. The lab provides facilities for activities in High Altitude Balloons, construction of air-vehicles and nano-satellites, 0-g flights, and STK simulation package for satellite flights and trajectories.

Theoretical and Applied Mechanics Group
Research in the Theoretical and Applied Mechanics Group (TAMG) focuses on using experimental, analytical and computational tools to understand deformation and failure of materials, components and structures in a broad range of time and length scales. To accomplish this goal, TAMG develops procedures that include mechanical behavior characterization coupled with non-destructive testing and modern computational tools. This information is used both for understanding the role of important material scales in the observed bulk behavior and for the formulation of constitutive laws that can model the response including damage initiation and progression according to prescribed loading conditions. Equipment and facilities used by TAMG include a range of mechanical testing equipment for testing in tension, compression, fatigue and fracture.

Vascular Kinetics Laboratory
The Vascular Kinetics Laboratory (VKL) uses engineering methods to understand how biomechanics and biochemistry interact in cardiovascular disease. In particular, we study fluid flow and blood vessel stiffness impact cellular response to glucose, growth factors, and inflammation to lead to atherosclerosis and metabolic syndrome. We then apply these discoveries to novel biomaterials and therapies, with a particular focus on treating cardiovascular disease in under-served populations. This research is at the interface of engineering and medicine, with close collaborations with biologists and physicians and a strong emphasis on clinical applications.

Mechanical Engineering Faculty
Jennifer Atchison, PhD (Drexel University). Assistant Teaching Professor. Engineering Education, Functional Fabrics, and Nanofibers

Jonathan Awerbuch, DSc (Technion, Israel Institute of Technology). Professor. Mechanics of composites; fracture and fatigue; impact and wave propagation; structural dynamics.

Nicholas P. Cernansky, PhD (University of California-Berkeley) Hess Chair Professor of Combustion. Professor. Combustion chemistry and kinetics; combustion generated pollution; utilization of alternative and synthetic fuels.

Bor-Chin Chang, PhD (Rice University). Professor. Computer-aided design of multivariable control systems; robust and optimal control systems.

Richard Chiou, PhD (Georgia Institute of Technology). Associate Professor. Green manufacturing, mechatronics, Internet-based robotics and automation, and remote sensors and monitoring.

Young I. Cho, PhD (University of Illinois-Chicago). Professor. Heat transfer; fluid mechanics; non-Newtonian flows; biofluid mechanics; rheology.

Bakhtier Farouk, PhD (University of Delaware) Billings Professor of Mechanical Engineering. Professor. Heat transfer; combustion; numerical methods; turbulence modeling; materials processing.

Alexander Fridman, DSc, PhD (Moscow Institute of Physics and Technology) Mechanical Engineering and Mechanics, John A. Nyheim Endowed University Chair Professor, Director of the Drexel Plasma Institute. Professor. Plasma science and technology; pollutant mitigation; super-adiabatic combustion; nanotechnology and manufacturing.
Li-Hsin Han, PhD (University of Texas at Austin). Assistant Professor. Polymeric, micro/nano-fabrication, biomaterial design, tissue engineering, rapid prototyping, free-form fabrication, polymer micro actuators, photonics

Y. Grace Hsuan, PhD (Imperial College). Professor. Durability of polymeric construction materials; advanced construction materials; and performance of geosynthetics.

Andrei Jablakow, PhD (University of Wisconsin, Madison) Associate Department Head for Undergraduate Affairs, Mechanical Engineering and Mechanics. Associate Teaching Professor. Engineering education; kinematics; geometric modeling.

Antonios Kontsos, PhD (Rice University). Associate Professor. Applied mechanics; probabilistic engineering mechanics; modeling of smart multifunctional materials.

E. Caglan Kumbur, PhD (Pennsylvania State University). Associate Professor. Next generation energy technologies; fuel cell design and development.

Harry G. Kwatny, PhD (University of Pennsylvania) S. Herbert Raynes Professor of Mechanical Engineering. Professor. Dynamic systems analysis; stochastic optimal control; control of electric power plants and systems.

Alan Lau, PhD (Massachusetts Institute of Technology). Professor. Deformation and fracture of nano-devices and macroscopic structures; damage-tolerant structures and microstructures.

Michele Marcolongo, PhD, PE (University of Pennsylvania). Professor Emerita. Orthopedic biomaterials; acellular regenerative medicine, biomimetic proteoglycans; hydrogels.

Roger Marino, PhD (Drexel University). Associate Teaching Professor. Engineering education; land development; product Development

Matthew McCarthy, PhD (Columbia University) Associate Department Head for Graduate Affairs, Mechanical Engineering and Mechanics. Associate Professor. Micro- and nanoscale thermofluidic systems, bio-inspired cooling, smart materials and structures for self-regulated two-phase cooling, novel architectures for integrated energy conversion and storage.

David L. Miller, PhD (Louisiana State University). Professor. Gas-phase reaction kinetics; thermodynamics; biofuels.

Moses Noh, PhD (Georgia Institute of Technology). Associate Professor. MEMS; BioMEMS; lab-on-a-chip; microfabrication; microfluidics.

Mira S. Olson, PhD (University of Virginia). Associate Professor. Peace engineering; source water quality protection and management; contaminant and bacterial fate and transport; community engagement.

Sorin Siegler, PhD (Drexel University). Professor. Orthopedic biomechanics; robotics; dynamics and control of human motion; applied mechanics.

Jonathan E. Spanier, PhD (Columbia University) Department Head, Mechanical Engineering and Mechanics. Professor. Light-matter interactions in electronic materials, including ferroelectric semiconductors, complex oxide thin film science; laser spectroscopy, including Raman scattering.

Wei Sun, PhD (Drexel University) Albert Soffa Chair Professor of Mechanical Engineering. Professor. Computer-aided tissue engineering; solid freeform fabrication; CAD/CAM; design and modeling of nanodevices.

Ying Sun, PhD (University of Iowa). Associate Professor. Transport processes in multi-component systems with fluid flow; heat and mass transfer; phase change; pattern formation.

Tein-Min Tan, PhD (Purdue University). Associate Professor. Mechanics of composites; computational mechanics and finite-elements methods; structural dynamics.

James Tangorra, PhD (Massachusetts Institute of Technology) Department Head, Engineering Technology. Associate Professor. Analysis of human and (other) animal physiological systems; head-neck dynamics and control; balance, vision, and the vestibular system; animal swimming and flight; robotics; system identification; bio-inspired design.

Ajmal Yousuff, PhD (Purdue University). Associate Professor. Optimal control; flexible structures; model and control simplifications.

Jack G. Zhou, PhD (New Jersey Institute of Technology). Professor. CAD/CAM; computer integrated manufacturing systems; rapid prototyping; system dynamics and automatic control.

Emeritus Faculty

Leon Y. Bahar, PhD (Lehigh University). Professor Emeritus. Analytical methods in engineering, coupled thermoelasticity, interaction between analytical dynamics and control systems.

Donald H. Thomas, PhD (Case Institute of Technology). Professor Emeritus. Biocontrol theory, biomechanics, fluidics and fluid control, vehicle dynamics, engineering design.

Albert S. Wang, PhD (University of Delaware). Professor Emeritus. Treatment of damage evolution processes in multi-phased high-temperature materials, including ceramics and ceramic-matrix composites.

Mechanical Engineering and Mechanics PhD

Major: Mechanical Engineering and Mechanics
Degree Awarded: Doctor of Philosophy (PhD)
Calendar Type: Quarter
Minimum Required Credits: 90.0
Co-op Option: None
Classification of Instructional (CIP) code: 14.1901
Standard Occupational Classification (SOC) code: 17-2141

About the Program

The Mechanical Engineering and Mechanics (MEM) Department (https://drexel.edu/engineering/academics/departments/mechanical-engineering/) offers a PhD degree. The courses often associate with one or more areas of specialization: design and manufacturing, mechanics, systems and control, and thermal and fluid sciences. The mechanical engineering field is rapidly changing due to ongoing advances in modern science and technology. Effective mechanical engineers must possess expertise in mechanical engineering core subjects, interdisciplinary skills, teamwork skills, as well as entrepreneurial and managerial abilities. The degree programs are designed so students can learn the state-of-the-art knowledge now, and have the foundation to acquire new knowledge as they develop in future.

The General (Aptitude) Test of the Graduate Record Examination (GRE) is required for applicants pursuing full-time study.

The PhD degree program is offered for full-time students only and is a research intensive program. The research areas include, but are not limited to, bio-engineering, energy systems, high performance materials, nanotechnology, plasma science and engineering, and robotics.

Admission Requirements

Applicants must meet the graduate requirements for admission to Drexel University. Students holding a bachelor's degree in a science or engineering discipline other than mechanical engineering are advised to take several undergraduate courses as preparation for graduate studies. Though these courses are not counted toward the required credits for the degree, they also must be listed in the student's plan of study. Outstanding students with a GPA of at least 3.5 in their master's program will be considered for admission to the program leading to the doctor of philosophy degree in mechanical engineering.

Degree Requirements

Outstanding students with a GPA of at least 3.5 in their master's program will be considered for admission to the program leading to the Doctor of Philosophy degree in mechanical engineering.

PhD Course Requirements

At least 90.0 credits are required for the PhD degree. The master's degree is not a prerequisite for the PhD, but does count as 45.0 credits toward the 90.0 credit requirement.

For students entering the PhD program with a prior MS degree:

- 45.0 credits of graduate courses out of which 18.0 credits are graduate courses exclusive of independent study and dissertation. If the MS degree was not from Drexel's Mechanical Engineering and Mechanics (MEM) Department, 12.0 of these 18.0 credits must be MEM graduate courses (600-level or above). The remaining 27.0 credits consist of a combination of dissertation, independent study, and additional advanced coursework consistent with the approved plan of study.

For students entering the PhD program with a BS degree but without a prior master's degree:

- 90.0 credits of graduate courses. 45.0 of these 90.0 credits must satisfy the MS in Mechanical Engineering degree requirements. The remaining 45.0 credits must satisfy the requirements above.

PhD Candidacy Examination

A graduate student in the PhD program needs be nominated by his/her supervising adviser to take the candidacy examination. A student who enters the PhD program with a prior MS degree must take the Candidacy Examination within the first year after entry to the PhD program. A student who enters the PhD program without a prior MS degree must take the Candidacy Examination within 2 years after entry to the PhD program.

The Candidacy Examination consists of two components: A course-component examination and a research-component examination. The student must demonstrate excellence in both components. The research-component examination consists of a written report and an oral presentation. The Candidacy
Committee selects three or more research papers in the student’s declared research area for student to conduct a critical review. In three weeks the student submits a written report. One week after the written report is submitted the student makes an oral presentation. The presentation is followed by questions by the Committee. The goals of the questions: To evaluate the student’s knowledge in the scientific fields related to the research area, including related background and fundamental material, and the student’s ability to integrate information germane to success in research. Additional details are given in the Mechanical Engineering and Mechanics Graduate Program Manual.

Thesis Proposal
At least one year prior to graduation, the PhD candidate must give a thesis proposal to the dissertation advisory committee. The student must submit a written proposal and make a presentation. The written proposal normally includes: abstract, introduction, detailed literature review, preliminary results, proposed research tasks and timetable. The committee will approve/reject the thesis topic, the scope of work and the general method of attack.

Thesis Defense
A final examination consisting of a presentation and defense of the research dissertation is required, before the PhD degree is granted.

Further details can be obtained from the department's Graduate Programs Manual.

Facilities

Advanced Design and Manufacturing Laboratory
This laboratory provides research opportunities in design methodology, computer-aided design, analysis and manufacturing, and materials processing and manufacturing. Facilities include various computers and software, I-DEAS, Pro/E, ANSYS, MasterCAM, Mechanical DeskTop, SurfCAM, Euclid, Strim, ABQUS, and more. The machines include two Sanders Model Maker rapid prototyping machines, a BridgePort CNC Machining Center, a BOY 220 injection molding machine, an Electra high-temperature furnace for metal sintering, infiltration, and other heat treatment.

Biofabrication Laboratory
Utilizes cells or biologics as basic building blocks in which biological models, systems, devices and products are manufactured. Biofabrication techniques encompass a broad range of physical, chemical, biological, and/or engineering processes, with various applications in tissue science and engineering, regenerative medicine, disease parthenogenesis and drug testing studies, biochips and biosensors, cell printing, patterning and assembly, and organ printing.

The Biofabrication Lab at Drexel University integrates computer-aided tissue engineering, modern design and manufacturing, biomaterials and biology in modeling, design and biofabrication of tissue scaffolds, tissue constructs, micro-organ, tissue models. The ongoing research focuses on bio-tissue modeling, bio-blueprint modeling, scaffold informatics modeling, biomimetic design of tissue scaffold, additive manufacturing of tissue scaffolds, cell printing and organ printing.

Biological Systems Analysis Laboratory
The research in the Laboratory for Biological Systems Analysis involves the integration of biology with systems level engineering analysis and design, with an emphasis on: (1) the development of robotic systems that borrow from nature's designs and use novel technologies to achieve superior performance and function; and (2) the use of system identification techniques to evaluate the functional performance of animal physiological systems under natural, behavioral conditions. Facilities include rapid prototyping machines, compliant material manufacturing, mold making facilities, and a traditional machine shop and electronics workshop.

Biomechanics Laboratory
Emphasis in this laboratory is placed on understanding the mechanical properties of human joints, characterization of the mechanical properties of biological materials, studies of human movements, and design and development of artificial limbs. Facilities include a 3-D kinematic measuring system, Instron testing machine, and microcomputers for data acquisition and processing. Additional biomechanical laboratory facilities are available at Moss Rehab Hospital.

Combustion Diagnostics Laboratory
High-speed cameras, spectrometers, and laser systems are used to conduct research in low temperature hydrocarbon oxidation, cool flames, and plasma-assisted ignition and combustion. Research in optical diagnostic development is conducted in this lab with a specific focus on tools to measure small peroxy radicals.

Combustion, Fuel Chemistry, and Emissions Laboratory
Emphasis in this laboratory is placed on developing an understanding of both the chemical and physical factors that control and, hence, can be used to tailor combustion processes for engineering applications. Facilities include two single cylinder research engines, a pressurized flow reactor (PFR) facility, flat flame and slot burner systems, and complete analytical and monitoring instrumentation. The engine systems are used to study the effects of operating variables, fuel type, ambient conditions, and control devices on engine performance and emissions. The PFR facility is used for detailed kinetic studies of hydrocarbon pyrolysis and oxidation processes.

Complex Fluids and Multiphase Transport Laboratory
The research focus of this lab lies at the interface of thermal-fluid sciences, nano materials, and colloid and surface sciences. We apply these fundamental sciences to advance energy conversion and storage systems, to provide effective thermal management solutions, and to enable scalable additive nanomanufacturing. Facilities include materials printing systems, fluorescence microscope and imaging systems, complex fluid characterization,
microfluidics and heat transfer testers, coating and solar cell testing devices, electrochemical characterization, and high performance computing facilities.

Dynamic Multifunctional Materials Laboratory
The focus of the Dynamic Multifunctional Materials Laboratory (DMML) is mechanics of materials, namely fracture and failure mechanisms under extreme conditions and their correlation to meso- and microstructural characteristics. Utilizing highly integrated experimental facilities such as a Kolsky (split-Hopkinson pressure bar), single-stage, and two-stage light-gas gun, complex material behavior is deconstructed into dominant time and length scales associated with the energetics of damage evolution. In-situ laser and optical diagnostics such as caustics, interferometry techniques, schlieren visualization and virtual grid method, are used to investigate coupled field properties of multifunctional materials with the goal of not only analyzing and understanding behavior, but ultimately tailoring material properties for specific applications.

Electrochemical Energy Systems Laboratory
The Electrochemical Energy Systems Laboratory (ECSL) is specializes in the design, diagnostics and characterization of next generation electrochemical energy conversion and storage systems. Current areas of research include flow-assisted supercapacitors, next generation flow battery technology and fuel cells for transportation, stationary and portable applications. ECSL utilizes a comprehensive approach, including: advanced diagnostics, system design, materials characterization, and computational modeling of electrochemical energy systems. The core mission of ECSL is to develop novel diagnostic and computational tools to understand critical issues in flow-assisted electrochemical systems and enable better system design. Due to the complex nature of these systems, our research is highly interdisciplinary and spans the interface of transport phenomena, materials characterization, electrochemistry and system engineering.

Heat Transfer Laboratory
The heat transfer laboratory is outfitted with an array of instrumentation and equipment for conducting single- and multi-phase heat transfer experiments in controlled environments. Present efforts are studying the heat and mass transfer processes in super-critical fluids and binary refrigerants.

Lab-on-a-Chip and BioMEMS Lab
Develops miniature devices for biological and medical applications using microfabrication and microfluidics technologies. Our research projects have highly multidisciplinary nature and thus require the integration of engineering, science, biology and medicine. Projects are conducted in close collaboration with biologists and medical doctors. Our research methodology includes design and fabrication of miniature devices, experimental characterization, theoretical analysis, and numerical simulation.

Microcomputer Controls Laboratory
This laboratory provides an environment conducive to appreciating aspects of systems and control through hands-on experiments. They range from data acquisition and processing to modeling of dynamical systems and implementing a variety of controllers to control systems, such as DC motors and the inverted pendulum. Active research is being conducted on control reconfiguration in the event of actuator failures in aircrafts.

Multiscale Thermofluidics Laboratory
Develops novel scalable nanomanufacturing techniques using biological templates to manipulate micro- and nano- scale thermal and fluidic phenomena. Current work includes enhancing phase-change heat transfer with super-wetting nanostructured coatings and transport and separation through nanoporous membranes.

Nyheim Plasma Institute
The Nyheim Plasma Institute (NPI) was formed in 2002 (originally the A.J. Drexel Plasma Institute) to stimulate and coordinate research projects related to plasma and other modern high-energy engineering techniques. Today the NPI is an active multidisciplinary organization involving 23 faculty members from 6 engineering departments working in close collaboration with the School of Biomedical Engineering, College of Arts and Sciences, and the College of Nursing and Health Professions.

Precision Instrumentation and Metrology Laboratory
This laboratory is focused on activities related to precision measurement, computer-aided inspection, and precision instrument design. Facilities include 3D Coordinate Measuring Machine (Brown & Sharpe) with Micro Measurement and Reverse engineering software, Surface Profilometer, and Laser Displacement Measuring System.

Space Systems Laboratory
The objective of the Space Systems Laboratory (SSL) is to inspire future generations to advance aerospace engineering. It provides research opportunities in orbital mechanics, rendezvous and docking maneuvers, mission planning, and space environment. The lab provides facilities for activities in High Altitude Balloons, construction of air-vehicles and nano-satellites, 0-g flights, and STK simulation package for satellite flights and trajectories.

Theoretical and Applied Mechanics Group
Research in the Theoretical and Applied Mechanics Group (TAMG) focuses on using experimental, analytical and computational tools to understand deformation and failure of materials, components and structures in a broad range of time and length scales. To accomplish this goal, TAMG develops procedures that include mechanical behavior characterization coupled with non-destructive testing and modern computational tools. This information is used both for understanding the role of important material scales in the observed bulk behavior and for the formulation of constitutive laws that can model the response including damage initiation and progression according to prescribed loading conditions. Equipment and facilities used by TAMG include a range of mechanical testing equipment for testing in tension, compression, fatigue and fracture.
Vascular Kinetics Laboratory
The Vascular Kinetics Laboratory (VKL) uses engineering methods to understand how biomechanics and biochemistry interact in cardiovascular disease. In particular, we study fluid flow and blood vessel stiffness impact cellular response to glucose, growth factors, and inflammation to lead to atherosclerosis and metabolic syndrome. We then apply these discoveries to novel biomaterials and therapies, with a particular focus on treating cardiovascular disease in under-served populations. This research is at the interface of engineering and medicine, with close collaborations with biologists and physicians and a strong emphasis on clinical applications.

Mechanical Engineering Faculty

Jennifer Atchison, PhD (Drexel University). Assistant Teaching Professor. Engineering Education, Functional Fabrics, and Nanofibers

Jonathan Awerbuch, DSc (Technion, Israel Institute of Technology). Professor. Mechanics of composites; fracture and fatigue; impact and wave propagation; structural dynamics.

Nicholas P. Cernansky, PhD (University of California-Berkeley) Hess Chair Professor of Combustion. Professor. Combustion chemistry and kinetics; combustion generated pollution; utilization of alternative and synthetic fuels.

Bor-Chin Chang, PhD (Rice University). Professor. Computer-aided design of multivariable control systems; robust and optimal control systems.

Richard Chiou, PhD (Georgia Institute of Technology). Associate Professor. Green manufacturing, mechatronics, Internet-based robotics and automation, and remote sensors and monitoring.

Young I. Cho, PhD (University of Illinois-Chicago). Professor. Heat transfer; fluid mechanics; non-Newtonian flows; biofluid mechanics; rheology.

Bakhtier Farouk, PhD (University of Delaware) Billings Professor of Mechanical Engineering. Professor. Heat transfer; combustion; numerical methods; turbulence modeling; materials processing.

Alexander Fridman, DSc, PhD (Moscow Institute of Physics and Technology) Mechanical Engineering and Mechanics, John A. Nyheim Endowed University Chair Professor, Director of the Drexel Plasma Institute. Professor. Plasma science and technology; pollutant mitigation; super-adiabatic combustion; nanotechnology and manufacturing.

Li-Hsin Han, PhD (University of Texas at Austin). Assistant Professor. Polymeric, micro/nano-fabrication, biomaterial design, tissue engineering, rapid prototyping, free-form fabrication, polymer micro actuators, photonics

Y. Grace Hsuan, PhD (Imperial College). Professor. Durability of polymeric construction materials; advanced construction materials; and performance of geosynthetics.

Andrei Jablokow, PhD (University of Wisconsin, Madison) Associate Department Head for Undergraduate Affairs, Mechanical Engineering and Mechanics. Associate Teaching Professor. Engineering education; kinematics; geometric modeling.

Antonios Kontsos, PhD (Rice University). Associate Professor. Applied mechanics; probabilistic engineering mechanics; modeling of smart multifunctional materials.

E. Caglan Kumbur, PhD (Pennsylvania State University). Associate Professor. Next generation energy technologies; fuel cell design and development.

Harry G. Kwatny, PhD (University of Pennsylvania) S. Herbert Raynes Professor of Mechanical Engineering. Professor. Dynamic systems analysis; stochastic optimal control; control of electric power plants and systems.

Alan Lau, PhD (Massachusetts Institute of Technology). Professor. Deformation and fracture of nano-devices and macroscopic structures; damage-tolerant structures and microstructures.

Michele Marcolongo, PhD, PE (University of Pennsylvania). Professor Emerita. Orthopedic biomaterials; acellular regenerative medicine, biomimetic proteoglycans; hydrogels.

Roger Marino, PhD (Drexel University). Associate Teaching Professor. Engineering education; land development; product Development

Matthew McCarthy, PhD (Columbia University) Associate Department Head for Graduate Affairs, Mechanical Engineering and Mechanics. Associate Professor. Micro- and nanoscale thermofluidic systems, bio-inspired cooling, smart materials and structures for self-regulated two-phase cooling, novel architectures for integrated energy conversion and storage.

David L. Miller, PhD (Louisiana State University). Professor. Gas-phase reaction kinetics; thermodynamics; biofuels.

Moses Noh, PhD (Georgia Institute of Technology). Associate Professor. MEMS; BioMEMS; lab-on-a-chip; microfabrication; microfluidics.

Mira S. Olson, PhD (University of Virginia). Associate Professor. Peace engineering; source water quality protection and management; contaminant and bacterial fate and transport; community engagement.
Sorin Siegler, PhD (Drexel University). Professor. Orthopedic biomechanics; robotics; dynamics and control of human motion; applied mechanics.

Jonathan E. Spanier, PhD (Columbia University) Department Head, Mechanical Engineering and Mechanics. Professor. Light-matter interactions in electronic materials, including ferroelectric semiconductors, complex oxide thin film science; laser spectroscopy, including Raman scattering.

Wei Sun, PhD (Drexel University) Albert Soffa Chair Professor of Mechanical Engineering. Professor. Computer-aided tissue engineering; solid freeform fabrication; CAD/CAM; design and modeling of nanodevices.

Ying Sun, PhD (University of Iowa). Associate Professor. Transport processes in multi-component systems with fluid flow; heat and mass transfer; phase change; pattern formation.

Tein-Min Tan, PhD (Purdue University). Associate Professor. Mechanics of composites; computational mechanics and finite-elements methods; structural dynamics.

James Tangorra, PhD (Massachusetts Institute of Technology) Department Head, Engineering Technology. Associate Professor. Analysis of human and (other) animal physiological systems; head-neck dynamics and control; balance, vision, and the vestibular system; animal swimming and flight; robotics; system identification; bio-inspired design.

Ajmal Yousuff, PhD (Purdue University). Associate Professor. Optimal control; flexible structures; model and control simplifications.

Jack G. Zhou, PhD (New Jersey Institute of Technology). Professor. CAD/CAM; computer integrated manufacturing systems; rapid prototyping; system dynamics and automatic control.

Emeritus Faculty

Leon Y. Bahar, PhD (Lehigh University). Professor Emeritus. Analytical methods in engineering, coupled thermoelasticity, interaction between analytical dynamics and control systems.

Donald H. Thomas, PhD (Case Institute of Technology). Professor Emeritus. Biocontrol theory, biomechanics, fluidics and fluid control, vehicle dynamics, engineering design.

Albert S. Wang, PhD (University of Delaware). Professor Emeritus. Treatment of damage evolution processes in multi-phased high-temperature materials, including ceramics and ceramic-matrix composites.

Nanomaterials

Major: Nanomaterials
Degree Awarded: Master of Science (MS)
Calendar Type: Quarter
Minimum Required Credits: 45.0
Co-op Option: Available for full-time, on-campus master's-level students
Classification of Instructional Programs (CIP) code: 15.1601
Standard Occupational Classification (SOC) code: 17-2199

About the Program

The Department of Materials Science and Engineering (MSE) provides an excellent opportunity for students to gain an advanced understanding of nanomaterials in this Master of Science degree program. Students attend classes and carry out research within faculty research groups to solve problems related to energy, health, and other applications using novel approaches in the area of nanomaterials. The program is designed to expand interdisciplinary knowledge and integrate critical thinking and research within the student's academic experience.

Additional Information

For more information, contact:

Jamie Banks
Operations Project Manager, A.J. Drexel Nanomaterials Institute
jeb23@drexel.edu
Admission Requirements

Application Deadlines

- **US Students**
 - Jun. 1 (Fall Term)
 - Oct. 15 (Winter Term)
 - Jan. 15 (Spring Term)
- **International Students**:
 - June 1 (Fall Term only)
 - Consideration for a term other than fall requires special permission from the academic department prior to application.

Applications are accepted at any time. Funding options will be decided on an individual basis.

Requirements

For details regarding the items below please review the Admission Application Instructions (http://drexel.edu/grad/apply/checklist/).

- Graduate Admission Application (http://drexel.edu/grad/apply/online-app/)
 - Applicants may only apply to one program.
 - All documents submitted by you or on your behalf in support of this application for admission to Drexel University become the property of the University, and will under no circumstances be released to you or any other party.
 - An application fee of $65 USD is required.
- Transcripts
 - Provide official transcripts from all colleges and universities attended.
 - International students: If you have already graduated from your previous institution at the time of your application, please email your graduation certificate(s) attached as PDF or Microsoft Word documents to enroll@drexel.edu.
- Standardized Test Scores
 - GRE test scores may be required.

Degree Requirements

Core Courses

Select 15.0 credits from the list below. Other graduate courses related to Nanomaterials or Nanotechnology can be counted as Core Courses if approved by the graduate advisor. Any 500 or 600 level course from the following departments with approval from Nanomaterials graduate advisor: CHEM, PHYS, BIO, SCTS, ENSS, ENVS, FASH, ENTP, CS, CI, DSCI, MATE, CAEE, ECE, MEM, CHE, EGMT, BMES.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECEE 607</td>
<td>Nanoscale Fields</td>
</tr>
<tr>
<td>MATE 503</td>
<td>Introduction to Materials Engineering</td>
</tr>
<tr>
<td>MATE 510</td>
<td>Thermodynamics of Solids</td>
</tr>
<tr>
<td>MATE 512</td>
<td>Introduction to Solid State Materials</td>
</tr>
<tr>
<td>MATE 515</td>
<td>Experimental Technique in Materials</td>
</tr>
<tr>
<td>MATE 585</td>
<td>Nanostructured Carbon Materials</td>
</tr>
<tr>
<td>MEM 517</td>
<td>Fundamentals of Nanomanufacturing</td>
</tr>
<tr>
<td>PHYS 553</td>
<td>Nanoscience</td>
</tr>
</tbody>
</table>

Academic Track: The remaining credits are completed within an academic track. Choose one of the below two options (Nanobiomaterials or Nanomaterials for Energy) or create a track (Emerging Applications of Nanomaterials) with approval of graduate advisor. Any 500 or 600 level course from the following departments with approval from Nanomaterials graduate advisor: CHEM, PHYS, BIO, SCTS, ENSS, ENVS, FASH, ENTP, CS, CI, DSCI, MATE, CAEE, ECE, MEM, CHE, EGMT, BMES.

Nanobiomaterials Track

- BIO 500 Biochemistry I
- BMES 541 Nano and Molecular Mechanics of Biological Materials
- BMES 631 Tissue Engineering I
- BMES 632 Tissue Engineering II
- BMES 660 Biomaterials I
- BMES 661 Biomaterials II
- MATE 501 Structure and Properties of Polymers
- MATE 544 Nanostructured Polymeric Materials
- MATE 681 Biomedical Materials I
- MATE 897 Research

Nanomaterials for Energy Track

- CHEM 555 Quantum Chemistry Of Molecules I
- CHEM 774 Electrochemistry for Chemists
- CHEM 868 Topics in Analytical Chemistry
Emerging Applications of Nanomaterials Track: Students may create a track focused on emerging interdisciplinary topic in nanomaterials. The track must be approved by the graduate advisor. In keeping with the interdisciplinary nature of the MS degree, the track must contain courses from at least two different departments. Any 500 or 600 level course from the following departments with approval from Nanomaterials graduate advisor: CHEM, PHYS, BIO, SCTS, ENSS, ENVS, FASH, ENTP, CS, CI, DSCI, MATE, CAEE, ECE, MEM, CHE, EGMT, BMES.

Research credits can be applied to any track (up to 12.0 credits)

Thesis or Non-Thesis Option**

<table>
<thead>
<tr>
<th>Thesis</th>
<th>Non-Thesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATE 898 [WI]</td>
<td>Master's Thesis</td>
</tr>
</tbody>
</table>

Choose 9.0 credits from courses listed in the academic tracks above with advisor approval.

Writing-Intensive Course Requirements

In order to graduate, all students must pass three writing-intensive courses after their freshman year. Two writing-intensive courses must be in a student's major. The third can be in any discipline. Students are advised to take one writing-intensive class each year, beginning with the sophomore year, and to avoid "clustering" these courses near the end of their matriculation. Transfer students need to meet with an academic advisor to review the number of writing-intensive courses required to graduate.

A "WI" next to a course in this catalog may indicate that this course can fulfill a writing-intensive requirement. For the most up-to-date list of writing-intensive courses being offered, students should check the Writing Intensive Course List (http://drexel.edu/coas/academics/departments-centers/english-philosophy/university-writing-program/writing-intensive-courses/) at the University Writing Program (http://drexel.edu/coas/academics/departments-centers/english-philosophy/university-writing-program/). Students scheduling their courses can also conduct a search for courses with the attribute "WI” to bring up a list of all writing-intensive courses available that term.

Sample Plan of Study

Nanomaterials for Energy Track (Thesis Option)

<table>
<thead>
<tr>
<th>First Year</th>
<th>Fall</th>
<th>Credits</th>
<th>Winter</th>
<th>Credits</th>
<th>Spring</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET 681</td>
<td>3.0</td>
<td>CHEM 555</td>
<td>3.0</td>
<td>MATE 507</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>Core Courses</td>
<td>6.0</td>
<td>Core Courses</td>
<td>6.0</td>
<td>MATE 572</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MATE 582</td>
<td>3.0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Fall</th>
<th>Credits</th>
<th>Winter</th>
<th>Credits</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECEE 821</td>
<td>3.0</td>
<td>MATE 544</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATE 898</td>
<td>3.0</td>
<td>MATE 898</td>
<td>6.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core Course</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Credits 45

* Students selecting the Nanobiomaterials track will complete 45.0-47.0 credits.

** Master's Thesis students take MATE 898 [WI] for 9.0 credits while Non-Thesis Master’s students select 9.0 credits from courses listed within each concentration. Additionally, Non-Thesis Master’s students may request approval from the graduate advisor to take special topics courses.
Nanobiomaterials Track (Thesis Option)

<table>
<thead>
<tr>
<th>First Year</th>
<th>Credits Winter</th>
<th>Credits Spring</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMES 660</td>
<td>4.0 BMES 661</td>
<td>4.0 BMES 541</td>
<td>3.0</td>
</tr>
<tr>
<td>Core Courses</td>
<td>6.0 MATE 661</td>
<td>3.0 MATE 544</td>
<td>3.0</td>
</tr>
<tr>
<td>Core Course</td>
<td>3.0 MATE 898</td>
<td>3.0 MATE 898</td>
<td>3.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Credits Winter</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 500</td>
<td>3.0 MATE 898*</td>
<td>3.0</td>
</tr>
<tr>
<td>MATE 501</td>
<td>3.0 Core Courses</td>
<td>6.0</td>
</tr>
<tr>
<td>MATE 898*</td>
<td>3.0</td>
<td></td>
</tr>
</tbody>
</table>

Total Credits 47

* Students enrolled in the Non-Thesis Master's program take electives in place of MATE 898 [WI].

Peace Engineering

Major: Peace Engineering
Degree Awarded: Master of Science (MS)
Calendar Type: Quarter
Minimum Required Credits: 48.0
Co-op Option: None
Classification of Instructional Programs (CIP) code: 14.0401
Standard Occupational Classification (SOC) code: 17-2081

About the Program

Peace Engineering will educate a new generation of professionals who are able to address challenges and implement solutions at the intersection of peacebuilding and engineering. The program is the result of a partnership between the U.S. Institute of Peace’s PeaceTech Lab and Drexel’s College of Engineering and serves the dual purpose of integrating engineering and technology into peacebuilding practice and infusing conflict-sensitivity into engineering design.

Peace Engineering will cultivate a new skillset in students by combining disciplines of study from engineering, the social dimensions of conflict, and the applied sciences. Students will learn to conduct conflict analyses and to develop ethically and technically just solutions. These solutions will be based in the understanding that conflict, and the ability to address its root causes, emerges from the dynamics and interactions of social, technical, and environmental systems. The program offers a combination of online and classroom courses, group seminars and experiential learning with partners such as the PeaceTech Lab, the U.S. Institute of Peace, community-based organizations, and government agencies.

Peace Engineering will be educating students to serve in fields that are growing rapidly due to the increased awareness of conflict and its causes (e.g., climate change), the widespread availability of technology that connects communities and economies, and the strong desire in current generations to have a positive impact on humanity. Extraordinary opportunities exist for graduates to work in the multinational, government, and non-governmental organizations that have historically led peacebuilding, stabilization, relief, and development efforts. These include the UN, WHO, World Bank, the World Food Programme, FEMA, DOS, DOD, NGOs and a host of public services within any community. Perhaps more impressive are the opportunities that are being created by the birth of the Peace Tech Industry. Engineers with a deep understanding of conflict are well suited to organizations that range from contractors involved in stabilization and development efforts, to extraction and consumer product companies working in conflict prone communities, to social entrepreneurs and their venture philanthropists developing technologies that do good.

Additional Information

For more information, please visit the Peace Engineering website https://drexel.edu/engineering/academics/departments/engineering-leadership-society/academic-programs/peace-engineering/ or contact the program director:

Dr. Mira Olson
ms028@drexel.edu

Degree Requirements

Core Peacebuilding Requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PENG 501</td>
<td>Peace Engineering Seminar - Fall</td>
</tr>
<tr>
<td>PENG 502</td>
<td>Peace Engineering Seminar - Winter</td>
</tr>
<tr>
<td>PENG 503</td>
<td>Peace Engineering Seminar - Spring</td>
</tr>
</tbody>
</table>

12.0
PENG 545 Introduction to Peacebuilding for Engineers
PENG 550 Conflict Management for Engineers
PENG 560 Peacebuilding Skills

Core Engineering Requirements 9.0
ENVE 727 Risk Assessment
PROJ 501 Introduction to Project Management
SYSE 540 Systems Engineering for Peacebuilding

Research Methods 9.0
CAEE 501 Community-Based Design
ENVE 750 Data-based Engineering Modeling
SCTS 502 Research Methods

Experiential Learning 6.0
PENG 600 Peace Engineering Experiential Learning

Social Dimensions of Conflict Electives 6.0
Technical Focus Sequences 6.0

Total Credits 48.0

* Social Dimensions of Conflict Electives
Students must complete a minimum of six credits, at the graduate level, from the following approved courses.
- Science, Technology and Society electives: SCTS 501, SCTS 570, SCTS 615, SCTS 620, SCTS 641, SCTS 645,
- Politics electives: PSCI 510, PSCI 553, ENVP 552
- Education electives: EDGI 550, EDGI 533, EDGI 536

** Technical Focus Sequences
Students must complete one sequence of at least 2 courses (6 credits) from the following approved sequences.
- Systems Analysis: SYSE 688, SYSE 690, EGMT 660
- Software Development: CS 502 CS 575, CS 576
- Machine Learning and AI: CS 510, CS 613, CS 610
- Information Security: INFO 517, INFO 712, INFO 710
- Database Management: INFO 605, INFO 606, INFO 607
- Information Retrieval: INFO 605, INFO 624, INFO 633
- Data Mining: INFO 605, INFO 634, INFO 633
- Web and Mobile Development: INFO 552, INFO 655
- Game Design: DIGM 505, DIGM 506
- Serious gaming: DIGM 530, DIGM 531
- Interactivity: DIGM 520, DIGM 521
- WASH: CIVE 564, CIVE 567, CIVE 561
- Power systems and Distribution: ECEP 501, ECEP 502, ECEP 601

Sample Plan of Study
One Year M.S.

First Year

<table>
<thead>
<tr>
<th></th>
<th>Credits Winter</th>
<th>Credits Spring</th>
<th>Credits Summer</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGMT 545</td>
<td>3.0 EGMT 550</td>
<td>3.0 CAEE 501</td>
<td>3.0 PENG 600</td>
<td>6.0</td>
</tr>
<tr>
<td>ENVE 750</td>
<td>3.0 ENVE 727</td>
<td>3.0 PENG 503</td>
<td>1.0 PROJ 501</td>
<td>3.0</td>
</tr>
<tr>
<td>PENG 501</td>
<td>1.0 PENG 502</td>
<td>1.0 PENG 560</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>SYSE 540</td>
<td>3.0 SCTS 502</td>
<td>3.0 Technical Focus Course 2*</td>
<td>3.0</td>
<td></td>
</tr>
</tbody>
</table>

Social Dimensions of Conflict Elective
- 3.0 Social Dimensions of Conflict Elective
- 3.0 Planning for Experiential Learning
- Technical Focus Course 1*

Total Credits 48
Two Year M.S.

First Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credits</th>
<th>Winter</th>
<th>Credits</th>
<th>Spring</th>
<th>Credits</th>
<th>Summer</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGMT 545</td>
<td>3.0</td>
<td>EGMT 550</td>
<td>3.0</td>
<td>CAEE 501</td>
<td>3.0</td>
<td>VACATION</td>
<td>3.0</td>
</tr>
<tr>
<td>ENVE 750</td>
<td>3.0</td>
<td>ENVE 727</td>
<td>3.0</td>
<td>PENG 503</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PENG 501</td>
<td>1.0</td>
<td>PENG 502</td>
<td>1.0</td>
<td>PENG 560</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SYSE 540</td>
<td>3.0</td>
<td>SCTS 562</td>
<td>3.0</td>
<td>Planning for</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Experiential Learning</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credits</th>
<th>Winter</th>
<th>Credits</th>
<th>Spring</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PENG 600</td>
<td>6.0</td>
<td>Social Dimensions of</td>
<td>3.0</td>
<td>Social Dimensions of</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Conflict Elective</td>
<td></td>
<td>Conflict Elective</td>
<td></td>
</tr>
<tr>
<td>PROJ 501</td>
<td>3.0</td>
<td>Technical Focus Course</td>
<td>3.0</td>
<td>Technical Focus Course</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1*</td>
<td></td>
<td>2*</td>
<td></td>
</tr>
</tbody>
</table>

Total Credits 48

* Technical Focus Courses must both be part of the same sequence, while Social Dimensions of Conflict Electives can be any two of the courses listed in the Program Requirements.

Robotics and Autonomy

Major: Robotics and Autonomy
Degree Awarded: Master of Science (MS)
Calendar Type: Quarter
Minimum Required Credits: 45.0
Co-op Option: Available for full-time, on-campus master's-level students
Classification of Instructional Programs (CIP) code: 14.4201
Standard Occupational Classification (SOC) code: 11-9041

About the Program

The graduate program in Robotics and Autonomy will educate professionals who are prepared to lead and conduct research, development, and design in robotic systems and technologies. This MS degree is built upon four foundational concepts in robotics: perception, cognition, control, and action. Roughly, these four capabilities comprise: 1) obtaining data from the robot’s surroundings (perception); 2) reasoning about how that data yields information about the robot’s environment (cognition); 3) mapping environmental information to a decision about how to react to the environment (control); and 4) translating that reaction decision into movement and an interaction with the physical environment (action).

The program is an interdepartmental program in Drexel's College of Engineering that educates and trains students in the theory, integration, and practical application of the core engineering and computer science disciplines that comprise robotics and autonomy. To be admitted, students must have a bachelor’s degree in a STEM field or demonstrate that they have acquired sufficient experience in a technical field to be able to satisfactorily complete engineering studies at the graduate level.

Students are also encouraged to engage in thesis research. The combined thesis and research cannot exceed 9.0 credits. The MS program is organized so that a student may complete the degree requirements in less than 2 years of full-time study or 2-3 years of part-time study.

Students within the Master of Science in Robotics and Autonomy are eligible to take part in the Graduate Co-op Program, which combines classroom coursework with a 6-month, full-time work experience. For more information, visit the Steinbright Career Development Center’s website (https://nam10.safelinks.protection.outlook.com/?url=http%3A%2F%2Fwww.drexel.edu%2Fscdc%2Fco-op%2Fgraduate%2F&data=04%7C71C01%7Cjg976%40drexel.edu%7C%7C70ef8e52a12801425bc33d08d914a15a84%7C7C3664ef6f47545a696708c4f108f8bca6%7C0%7C0%7C637563505497512205%7CUnknown%7C7TWFpG2zsb3d8eyjWjoiMC4wLjAwMDALCjJlOiV2uMziiLCJBTii6ik1haVwLCjXCI6iMn0%3D%7C1000&data=G5hdpjcnEWUGpVFR28Cll2xnrjqDBoPuphz3f78yjiskis%3D&reserved=0).

Additional Information

For more information about the MS in Robotics and Autonomy, please visit the Electrical and Computer Engineering Department (https://drexel.edu/engineering/academics/departments/electrical-computer-engineering/academic-programs/graduate/ms/robotics-and-autonomy/) website.
Admission Requirements

Applicants must satisfy general requirements for graduate admission including a minimum 3.0 GPA (on a 4.0 scale) for the last two years of undergraduate studies, as well as for any subsequent graduate work, and hold a bachelor's degree in an engineering discipline from an accredited college or university. A degree in science (physics, mathematics, computer science, etc.) is also acceptable. Applicants with degrees in sciences may be required to take a number of undergraduate engineering courses. An undergraduate degree earned abroad must be deemed equivalent to a US bachelor's.

Full-time applicants must take the GRE exam. Students who do not hold a degree from a US institution must take the TOEFL or IELTS exam within two years of application submission.

Additional Information

For more information, visit the Department of Electrical and Computer Engineering (https://drexel.edu/engineering/academics/departments/electrical-computer-engineering/) webpage.

Degree Requirements

<table>
<thead>
<tr>
<th>Foundation Courses</th>
<th>6.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Choose 2 courses in mathematics and/or signal processing</td>
<td></td>
</tr>
<tr>
<td>Mathematics</td>
<td></td>
</tr>
<tr>
<td>ECES 521</td>
<td>Probability & Random Variables</td>
</tr>
<tr>
<td>MATH 504</td>
<td>Linear Algebra & Matrix Analysis</td>
</tr>
<tr>
<td>MATH 510</td>
<td>Applied Probability and Statistics I</td>
</tr>
<tr>
<td>MATH 623</td>
<td>Ordinary Differential Equations I</td>
</tr>
<tr>
<td>MATH 630</td>
<td>Complex Variables I</td>
</tr>
<tr>
<td>MEM 591</td>
<td>Applied Engr Analy Methods I</td>
</tr>
<tr>
<td>MEM 592</td>
<td>Applied Engr Analy Methods II</td>
</tr>
<tr>
<td>MEM 593</td>
<td>Applied Engr Analy Methods III</td>
</tr>
<tr>
<td>Signal Processing</td>
<td></td>
</tr>
<tr>
<td>ECES 522</td>
<td>Random Process & Spectral Analysis</td>
</tr>
<tr>
<td>ECES 523</td>
<td>Detection & Estimation Theory</td>
</tr>
<tr>
<td>ECES 604</td>
<td>Optimal Estimation & Stochastic Control</td>
</tr>
<tr>
<td>ECES 631</td>
<td>Fundamentals of Deterministic Digital Signal Processing</td>
</tr>
<tr>
<td>Systems Courses</td>
<td>6.0</td>
</tr>
<tr>
<td>Choose 2 courses in robotics and autonomy from the perspective of full systems or use</td>
<td></td>
</tr>
<tr>
<td>CS 510</td>
<td>Introduction to Artificial Intelligence</td>
</tr>
<tr>
<td>ECE 610</td>
<td>Machine Learning & Artificial Intelligence</td>
</tr>
<tr>
<td>ECE 612</td>
<td>Applied Machine Learning Engineering</td>
</tr>
<tr>
<td>ECES 511</td>
<td>Fundamentals of Systems I</td>
</tr>
<tr>
<td>ECES 512</td>
<td>Fundamentals of Systems II</td>
</tr>
<tr>
<td>ECES 513</td>
<td>Fundamentals of Systems III</td>
</tr>
<tr>
<td>ECES 561</td>
<td>Medical Robotics I</td>
</tr>
<tr>
<td>ECES 562</td>
<td>Medical Robotics II</td>
</tr>
<tr>
<td>MEM 571</td>
<td>Introduction to Robot Technology</td>
</tr>
<tr>
<td>MEM 572</td>
<td>Mechanics of Robot Manipulators</td>
</tr>
<tr>
<td>MEM 573</td>
<td>Industrial Application of Robots</td>
</tr>
<tr>
<td>Core Components</td>
<td></td>
</tr>
<tr>
<td>Take 1 course in each of the four disciplines critical to robotics</td>
<td></td>
</tr>
<tr>
<td>Perception</td>
<td>3.0</td>
</tr>
<tr>
<td>ECE 687</td>
<td>Pattern Recognition</td>
</tr>
<tr>
<td>ECES 681</td>
<td>Fundamentals of Computer Vision</td>
</tr>
<tr>
<td>ECES 682</td>
<td>Fundamentals of Image Processing</td>
</tr>
<tr>
<td>ECET 512</td>
<td>Wireless Systems</td>
</tr>
<tr>
<td>ECET 7580</td>
<td>Special Topics in ECET</td>
</tr>
<tr>
<td>MEM 678</td>
<td>Nondestructive Evaluation Methods</td>
</tr>
<tr>
<td>Cognition and Behavior</td>
<td>3.0</td>
</tr>
<tr>
<td>CS 510</td>
<td>Introduction to Artificial Intelligence</td>
</tr>
<tr>
<td>CS 583</td>
<td>Introduction to Computer Vision</td>
</tr>
<tr>
<td>CS 613</td>
<td>Machine Learning</td>
</tr>
<tr>
<td>CS 630</td>
<td>Cognitive Systems</td>
</tr>
<tr>
<td>ECE 610</td>
<td>Machine Learning & Artificial Intelligence</td>
</tr>
<tr>
<td>ECE 612</td>
<td>Applied Machine Learning Engineering</td>
</tr>
</tbody>
</table>
Sample Plan of Study

First Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Credits</th>
<th>Courses</th>
<th>Credits</th>
<th>Courses</th>
<th>Credits</th>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>3.0</td>
<td>ECES 511</td>
<td>3.0</td>
<td>ECES 612</td>
<td>3.0</td>
<td>ECES 513</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MEM 591</td>
<td></td>
<td>ECES 642</td>
<td></td>
<td>EDGI 522</td>
</tr>
<tr>
<td>Winter</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summer</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Credits</th>
<th>Courses</th>
<th>Credits</th>
<th>Courses</th>
<th>Credits</th>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>3.0</td>
<td>ECE 610</td>
<td>3.0</td>
<td>ECE 697</td>
<td>3.0</td>
<td>MEM 571</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MEM 571</td>
<td></td>
<td>MEM 668</td>
<td></td>
<td>MEM 668</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td></td>
<td></td>
<td>9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Credits 45

Vince and Judy Vidas Program in Systems Engineering

Major: Systems Engineering
Degree Awarded: Master of Science (MS)
Calendar Type: Quarter
Minimum Required Credits: 45.0
Co-op Option: None
Classification of Instructional Programs (CIP) code: 14.2701
About the Program

The Master of Science in Systems Engineering is an interdisciplinary curriculum which integrates systems thinking with financial management and planning. The degree enables engineering leaders to perform, lead, and manage systems development throughout the entire life-cycle, from conceptual development and engineering design through the operation and sustainment phases. Study can be on a part-time or full-time basis, and the program is available both online and on-campus.

Drexel's MS Systems Engineering is certified by the International Council on Systems Engineering (INCOSE), and it is one of only six programs in the world to hold this distinction. Graduates will automatically qualify for the CSEP (Certified Systems Engineering Professional) or ASEP (Associate Systems Engineering Professional) without having to take the certification exam.

The MS Systems Engineering curriculum will do the following:

- Include models relevant to sustainable, high performance systems as they relate to effective systems engineering
- Expose students to model-based systems engineering using SysML and DODAF, also covering major aspects of the systems domain.
- Teach systems engineering processes and skills to integrate user needs, manage requirements, conduct technological evaluation, and build elaborate system architectures, assess risk and establish financial and schedule constraints.
- Prepare students to intelligently manage and contribute to any engineering challenge, including concept development, technology assessment, architecture selection, and proposal development. The courses stimulate and challenge students as they consider sustainability-oriented projects and become serious systems engineering managers and practitioners.

Program Outcomes

Graduates of the Drexel University Master of Science in Systems Engineering will be competent in their ability to:

- develop and implement models and tools to enhance and optimize complex systems;
- develop and manage processes relevant to complex systems development;
- architect, design, implement, integrate, verify, validate, support and decommission complex systems;
- use systems engineering tools and practices to identify and execute effective technical solutions;
- manage system-intensive projects within cost and schedule constraints;
- consider financial elements in all complex systems solutions.

Certificate Opportunity

Students may complete a Graduate Certificate as a standalone pursuit or as a gateway to the full Master of Science in Systems Engineering. Students may apply for admission to the Masters of Science in Systems Engineering degree program at any point in a certificate series. Upon admission, graduate courses successfully completed in the certificate series may be applied toward the Master's degree as applicable. Certificate opportunities include:

- Certificate in Systems Design and Development (p. 134)
- Certificate in Systems Engineering (p. 135)
- Certificate in Systems Engineering Analysis (p. 136)
- Certificate in Systems Engineering Integrated Logistics (p. 137)
- Certificate in Systems Reliability Engineering (p. 138)

Admission Requirements

Degree and GPA Requirement

A bachelor's degree in an Engineering discipline from an ABET-accredited college or university is required. A bachelor's degree in science (Physics, Mathematics, Computer Science, etc.) may also be acceptable. An undergraduate degree earned abroad must be deemed equivalent to a U.S. bachelor's degree. A minimum 3.0 GPA (on a 4.0 scale) for a bachelor's degree as well as for any subsequent graduate-level work is required.

TOEFL Requirement

For students whose native language is not English and who do not hold a degree from a US institution, the Test of English as a Foreign Language (TOEFL) is required. TOEFL scores must be less than two years old to be considered. Minimum total score of 94 (internet-based). Official documents of this exam must be submitted directly to the Graduate Admissions Office. Unofficial photocopies will not be accepted.
Other Requirements

- Submission of an application
- Official, sealed college transcripts
- An essay
- Two or more letters of recommendation

Degree Requirements

Students may take their required elective credits from any graduate-level course(s) in engineering, business, or another college for which they have adequate preparation and can obtain approvals from the college and the systems engineering program.

All candidates are encouraged to discuss areas of interest with the program advisor and to develop a proposed plan of study during the early stages of the program.

Note: Specific course requirements may be waived for students who have taken equivalent courses elsewhere.

<table>
<thead>
<tr>
<th>Required Courses</th>
<th>3.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGMT 572</td>
<td></td>
</tr>
<tr>
<td>EGMT 573</td>
<td></td>
</tr>
<tr>
<td>SYSE 520</td>
<td></td>
</tr>
<tr>
<td>SYSE 533</td>
<td></td>
</tr>
<tr>
<td>SYSE 598</td>
<td></td>
</tr>
<tr>
<td>SYSE 640</td>
<td></td>
</tr>
<tr>
<td>SYSE 682</td>
<td></td>
</tr>
<tr>
<td>SYSE 685</td>
<td></td>
</tr>
<tr>
<td>SYSE 688</td>
<td></td>
</tr>
<tr>
<td>SYSE 690</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Electives</th>
<th>15.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete five of the following:</td>
<td></td>
</tr>
<tr>
<td>ECEP 501</td>
<td>Power System Analysis</td>
</tr>
<tr>
<td>ECEP 502</td>
<td>Computer Analysis of Power Systems</td>
</tr>
<tr>
<td>ECEP 503</td>
<td>Synchronous Machine Modeling</td>
</tr>
<tr>
<td>ECEP 610</td>
<td>Power System Dynamics</td>
</tr>
<tr>
<td>ECEP 611</td>
<td>Power System Security</td>
</tr>
<tr>
<td>ECEP 612</td>
<td>Economic Operation of Power Systems</td>
</tr>
<tr>
<td>ECES 511</td>
<td>Fundamentals of Systems I</td>
</tr>
<tr>
<td>ECES 512</td>
<td>Fundamentals of Systems II</td>
</tr>
<tr>
<td>ECES 513</td>
<td>Fundamentals of Systems III</td>
</tr>
<tr>
<td>ECES 521</td>
<td>Probability & Random Variables</td>
</tr>
<tr>
<td>ECES 522</td>
<td>Random Process & Spectral Analysis</td>
</tr>
<tr>
<td>ECES 523</td>
<td>Detection & Estimation Theory</td>
</tr>
<tr>
<td>ECES 811</td>
<td>Optimization Methods for Engineering Design</td>
</tr>
<tr>
<td>EGMT 501</td>
<td>Leading and Managing Technical Workers</td>
</tr>
<tr>
<td>EGMT 502</td>
<td>Analysis and Decision Methods for Technical Managers</td>
</tr>
<tr>
<td>EGMT 531</td>
<td>Engineering Economic Evaluation & Analysis</td>
</tr>
<tr>
<td>EGMT 535</td>
<td>Financial Management</td>
</tr>
<tr>
<td>EGMT 615</td>
<td>New Product Conceptualization, Justification, and Implementation</td>
</tr>
<tr>
<td>EGMT 616</td>
<td>Value Creation through New Product Development</td>
</tr>
<tr>
<td>EGMT 620</td>
<td>Engineering Project Management</td>
</tr>
<tr>
<td>EGMT 625</td>
<td>Project Planning, Scheduling and Control</td>
</tr>
<tr>
<td>EGMT 630</td>
<td>Global Engineering Project Management</td>
</tr>
<tr>
<td>EGMT 635</td>
<td>Visual System Mapping</td>
</tr>
<tr>
<td>EGMT 645</td>
<td>Managing Engineering Disasters</td>
</tr>
<tr>
<td>EGMT 650</td>
<td>Systems Thinking for Leaders</td>
</tr>
<tr>
<td>EGMT 652</td>
<td>Engineering Law</td>
</tr>
<tr>
<td>SYSE 521</td>
<td>Integrated Risk Management</td>
</tr>
<tr>
<td>SYSE 522</td>
<td>Engineering Supply Chain Systems</td>
</tr>
<tr>
<td>SYSE 523</td>
<td>Systems Reliability Engineering</td>
</tr>
<tr>
<td>SYSE 524</td>
<td>Systems Reliability, Availability & Maintainability Analysis</td>
</tr>
<tr>
<td>SYSE 525</td>
<td>Statistical Modeling & Experimental Design</td>
</tr>
<tr>
<td>SYSE 530</td>
<td>Systems Engineering Design</td>
</tr>
<tr>
<td>SYSE 531</td>
<td>Systems Architecture Development</td>
</tr>
</tbody>
</table>
Electives from other engineering disciplines and/or Drexel colleges may be considered with review and approval by the advisor.

If a student decides to pursue the Master’s Thesis option, the student will complete the 30 core credits, 6 elective credits, and nine thesis credits. Advisor/Director consultation and approval is required if a student is interested in waiving core courses when pursuing the Master’s Thesis option.

Sample Plan of Study

<table>
<thead>
<tr>
<th>First Year</th>
<th>Credits Winter</th>
<th>Credits Spring</th>
<th>Credits Summer</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYSE 685</td>
<td>3.0 SYSE 520</td>
<td>3.0 EGMT 572</td>
<td>3.0 EGMT 573</td>
<td>3.0</td>
</tr>
<tr>
<td>SYSE 682</td>
<td>3.0 SYSE 688</td>
<td>3.0 SYSE 640</td>
<td>3.0 SYSE 533</td>
<td>3.0</td>
</tr>
<tr>
<td>Total</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Credits Winter</th>
<th>Credits Spring</th>
<th>Credits Summer</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGMT 531</td>
<td>3.0 SYSE 525</td>
<td>3.0 SYSE 530</td>
<td>3.0 SYSE 598</td>
<td>3.0</td>
</tr>
<tr>
<td>SYSE 523</td>
<td>3.0 SYSE 522</td>
<td>3.0 SYSE 690</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credits 45

Dual Degree Programs

Students with a previously completed master’s degree at Drexel may pursue a second master’s degree in a different major without the need to go through the admission process again or to complete another 45.0 credits of graduate coursework. Up to 15.0 credits from the first master’s may be transferred into the second master’s degree program, enabling students to complete the second master’s degree with a minimum of 30.0 new graduate credits.

Career Opportunities

The MS in Systems Engineering prepares students to become effective systems engineers, leaders, managers, and future executives. With a systems engineering background, students are able to tackle a wide array of engineering challenges from the entire systems life cycle, including concept development, technology assessment, architecture selection, and proposal development.

Systems engineers are highly valued in industry because their skills complement those in traditional engineering fields. Whereas other engineering disciplines usually focus deeply in only one area, systems engineers must integrate all of those areas into a comprehensive and effective system. This is a versatile skill-set that allows for a flexible career path, as systems engineering expertise is sought by a wide range of industries such as healthcare, defense, communications, aerospace, government, transportation, finance, and more. Drexel University’s MS Systems Engineering will prepare students from any of these fields to lead large, complex projects in their organizations.

Systems Engineering Faculty

Richard Grandrino, MBA *(Drexel University)*. Teaching Faculty. Manager for advanced logistics operations at Lockheed Martin.
Steven Mastro, PhD *(Drexel University)*. Adjunct Faculty. Machinery Research and Silencing Division of NAVSEA Philadelphia. Work focuses on advanced sensor and control technologies for condition-based maintenance, damage control, and automation.

Miray Pereira, MBA *(Rutgers University)*. Adjunct Instructor. Manages a team of consultants responsible for development, facilitation and implementation of fundamental demand management systems and capabilities for DuPont, most recently with the DuPont Safety & Protection Platform in strategic planning, mergers & acquisitions.

Walter Sobkiw, BS *(Drexel University)*. Adjunct Faculty. Author of "Systems Engineering Design Renaissance" and "Systems Practices as Common Sense."

Fernando Tovia, PhD *(University of Arkansas)*. Adjunct Instructor. Core quantitative analysis, strategic planning, supply chain management and manufacturing systems.

John Via, DEngr *(Southern Methodist University)*. Teaching Professor. Pharmaceutical, Bio-pharmaceutical, and Medical Device development and manufacturing

The Internet of Things

Major: the Internet of Things
Degree Awarded: Master of Science (MS)
Calendar Type: Quarter
Minimum Required Credits: 45.0
Co-op Option: None
Classification of Instructional Programs (CIP) code: 14.1001
Standard Occupational Classification (SOC) code: 15-1143

About the Program

The world envisioned by the Internet of Things (IoT) includes high densities of sensors and actuators all communicating with one another to collect and process data for a wide variety of applications. In the context of future smart cities, applications can be envisioned at the personal scale, building scale, and campus/city scale. Personal scale IoT technologies include new wearables for medical applications including respiration monitoring, contraction monitoring, and new wearable actuation systems for telemedicine applications. Building scale IoT technologies include intelligent lighting, occupancy sensing, and smart ventilation control for energy efficient residential and commercial buildings. City scale IoT technologies include new sensors for environmental sensing such as air, water, and soil quality sensors as well as structural health monitoring for major urban infrastructure like buildings and bridges.

Addressing these societal challenges will require engineers trained with core knowledge in wireless communications and networks supplemented by hands-on laboratory experience. They can supplement this core knowledge with electives in computer engineering and embedded systems, radio frequency electronics, cybersecurity, and machine learning and data analytics. They must also be able to apply these technologies in applications such as biomedical devices, intelligent buildings, and smart power grids.

The Master of Science in the Internet of Things (IoT) curriculum encompasses 45.0 or 48.0 (with the Graduate Co-Op) approved credit hours, chosen in accordance with the following requirements and a plan of study arranged with the departmental graduate advisor in consultation with the student’s research advisor (if applicable). This plan of study must be filed in the Department of Electrical and Computer Engineering and approved with the departmental graduate advisor before the end of the first quarter for a full-time student, or by the end of the first year for a part-time student.

Admission Requirements

Applicants must meet the general requirements for graduate admission, which include at least a 3.0 GPA for the last two years of undergraduate study and for any graduate level study undertaken, and are required to hold a bachelor of science degree in electrical engineering or a related field. Applicants whose undergraduate degrees are not in the field of electrical engineering may be required to take a number of undergraduate courses. The GRE General Test is required of applicants for full-time MS and PhD programs. Applicants whose native language is not English and who do not have a previous degree from a US institution are required to take the Test of English as a Foreign Language (TOEFL).

Degree Requirements

<table>
<thead>
<tr>
<th>IoT Technical Elective courses</th>
<th>12.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECEE 517</td>
<td>Microwave Networks & Transmission Media</td>
</tr>
<tr>
<td>ECEE 518</td>
<td>Microwave Passive Components</td>
</tr>
<tr>
<td>ECEE 519</td>
<td>Microwave Active Subsystems</td>
</tr>
<tr>
<td>ECEP 601</td>
<td>Modeling & Analysis of Power Distribution Systems</td>
</tr>
<tr>
<td>ECEP 602</td>
<td>Power Distribution Automation and Control</td>
</tr>
<tr>
<td>ECEP 603</td>
<td>Service and Power Quality in Distribution Systems</td>
</tr>
<tr>
<td>ECEP 610</td>
<td>Power System Dynamics</td>
</tr>
<tr>
<td>ECEP 611</td>
<td>Power System Security</td>
</tr>
</tbody>
</table>
Sample Plan of Study

First Year

<table>
<thead>
<tr>
<th></th>
<th>Fall Credits</th>
<th>Winter Credits</th>
<th>Spring Credits</th>
<th>Summer Credits</th>
<th>Total Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>IoT Technical Elective</td>
<td>3.0</td>
<td>3.0</td>
<td></td>
<td>6.0 Vacation</td>
<td>9</td>
</tr>
<tr>
<td>ECE Technical Elective</td>
<td>6.0</td>
<td></td>
<td>6.0</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>9</td>
<td></td>
<td>0</td>
<td>45</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th></th>
<th>Fall Credits</th>
<th>Winter Credits</th>
<th>Total Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE Technical Elective</td>
<td>3.0</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>General Technical Elective</td>
<td>6.0</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>9</td>
<td>18</td>
</tr>
</tbody>
</table>

Total Credits 45

First Year (Part-Time)

<table>
<thead>
<tr>
<th></th>
<th>Fall Credits</th>
<th>Winter Credits</th>
<th>Spring Credits</th>
<th>Summer Credits</th>
<th>Total Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>IoT Technical Elective</td>
<td>3.0</td>
<td>3.0</td>
<td></td>
<td>3.0 Vacation</td>
<td>9</td>
</tr>
<tr>
<td>ECE Technical Elective</td>
<td>3.0</td>
<td></td>
<td>3.0</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6</td>
<td></td>
<td>0</td>
<td>18</td>
</tr>
</tbody>
</table>

Second Year (Part-Time)

<table>
<thead>
<tr>
<th></th>
<th>Fall Credits</th>
<th>Winter Credits</th>
<th>Spring Credits</th>
<th>Total Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>IoT Technical Elective</td>
<td>3.0</td>
<td>3.0</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>ECE Technical Elective</td>
<td>3.0</td>
<td>3.0</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6</td>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>

Third Year (Part-Time)

<table>
<thead>
<tr>
<th></th>
<th>Fall Credits</th>
<th>Winter Credits</th>
<th>Total Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE Technical Elective</td>
<td>3.0</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>General Technical Elective</td>
<td>3.0</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>3</td>
<td>9</td>
</tr>
</tbody>
</table>

Total Credits 45

* 500-level or higher courses from ECEE, ECEP, ECEC, ECES, ECET, and ECE.

** 500-level or higher courses from ECEC, ECEE, ECEP, ECES, ECET, ECE, AE, CHE, CIVE, CAEE, CMGT, EGE0, EGMT, ENGR, ENVE, ET, MATE, MEM, PENG, PRMT, SYSE, BMES, MATH, PHYS, CHEM, BIO, and CS.
Graduate Minor in Computational Engineering

About the Graduate Minor

The graduate minor in Computational Engineering gives students pursuing a technical graduate degree an opportunity to develop core computational and mathematical competencies to complement their master's degree coursework.

Successful completion of the minor requires that students take five courses (15.0 credits). At least three courses must come from the three core subject areas; the student must take at least one course in each of the three core subject areas. The remaining two courses may be either core courses or elective courses.

The distinction between core and elective courses is that core courses are intended to be accessible to any College of Engineering graduate student without prerequisites. Elective courses, on the other hand, may require additional prerequisites and may be suitable only for students in certain academic disciplines or with certain academic backgrounds.

Program Requirements

Programming, Data Structures, Algorithms Requirement

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMES 550</td>
<td>Advanced Biocomputational Languages</td>
</tr>
<tr>
<td>CS 502</td>
<td>Data Structures and Algorithms</td>
</tr>
<tr>
<td>CS 503</td>
<td>Systems Basics</td>
</tr>
<tr>
<td>CS 521</td>
<td>Data Structures and Algorithms I</td>
</tr>
<tr>
<td>CS 540</td>
<td>High Performance Computing</td>
</tr>
<tr>
<td>CS 550</td>
<td>Programming Languages</td>
</tr>
<tr>
<td>CS 575</td>
<td>Software Design</td>
</tr>
<tr>
<td>CS 576</td>
<td>Dependable Software Systems</td>
</tr>
</tbody>
</table>

Numerical Methods, Linear Algebra, Modeling and Simulation, Optimization Requirement

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMES 672</td>
<td>Biosimulation I</td>
</tr>
<tr>
<td>CHE 626</td>
<td>Transport Phenomena II</td>
</tr>
<tr>
<td>ECES 811</td>
<td>Optimization Methods for Engineering Design</td>
</tr>
<tr>
<td>ENVE 681</td>
<td>Analytical and Numerical Techniques in Hydrology</td>
</tr>
<tr>
<td>HMP 815</td>
<td>Cost Benefit Analysis for Health Services</td>
</tr>
<tr>
<td>MATE 535</td>
<td>Numerical Engineering Methods</td>
</tr>
<tr>
<td>MATH 504</td>
<td>Linear Algebra & Matrix Analysis</td>
</tr>
<tr>
<td>MATH 520</td>
<td>Numerical Analysis I</td>
</tr>
<tr>
<td>MATH 521</td>
<td>Numerical Analysis II</td>
</tr>
<tr>
<td>MATH 540</td>
<td>Numerical Computing</td>
</tr>
<tr>
<td>MATH 544</td>
<td>Advanced Engineering Mathematics I</td>
</tr>
<tr>
<td>MEM 591</td>
<td>Applied Engr Analy Methods I</td>
</tr>
<tr>
<td>MEM 681</td>
<td>Finite Element Methods I</td>
</tr>
<tr>
<td>MEM 711</td>
<td>Computational Fluid Mechanics and Heat Transfer I</td>
</tr>
<tr>
<td>OPR 620</td>
<td>Operations Research I</td>
</tr>
<tr>
<td>OPR 624</td>
<td>Advanced Mathematical Program</td>
</tr>
<tr>
<td>OPR 922</td>
<td>Operations Research Methods I</td>
</tr>
<tr>
<td>OPR 992</td>
<td>Applied Math Programming</td>
</tr>
</tbody>
</table>

Probability, Statistics, Machine Learning Requirement

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMES 510</td>
<td>Biomedical Statistics</td>
</tr>
<tr>
<td>CS 510</td>
<td>Introduction to Artificial Intelligence</td>
</tr>
<tr>
<td>ECEC T680</td>
<td>Special Topics in ECEC (Pattern Recognition)</td>
</tr>
<tr>
<td>ECES 521</td>
<td>Probability & Random Variables</td>
</tr>
<tr>
<td>EGMT 571</td>
<td>Engineering Statistics</td>
</tr>
<tr>
<td>ENVE 727</td>
<td>Risk Assessment</td>
</tr>
<tr>
<td>ENVE 750</td>
<td>Data-based Engineering Modeling</td>
</tr>
<tr>
<td>MATH 510</td>
<td>Applied Probability and Statistics I</td>
</tr>
<tr>
<td>STAT 601</td>
<td>Business Statistics</td>
</tr>
<tr>
<td>STAT 610</td>
<td>Statistics for Business Analytics</td>
</tr>
<tr>
<td>STAT 924</td>
<td>Multivariate Analysis I</td>
</tr>
<tr>
<td>STAT 931</td>
<td>Statistics for Economics</td>
</tr>
<tr>
<td>STAT 932</td>
<td>Statistics for Behavioral Science</td>
</tr>
</tbody>
</table>

Additional Elective Courses
Complete 2 courses from the following list (or any 2 courses from the above lists):

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE 551</td>
<td>Building Energy Systems I</td>
</tr>
<tr>
<td>BMES 517</td>
<td>Intermediate Biostatistics</td>
</tr>
<tr>
<td>BMES 518</td>
<td>Interpretation of Biomedical Data</td>
</tr>
<tr>
<td>BMES 673</td>
<td>Biosimulation II</td>
</tr>
<tr>
<td>BST 551</td>
<td>Statistical Inference I</td>
</tr>
<tr>
<td>BST 558</td>
<td>Applied Multivariate Analysis</td>
</tr>
<tr>
<td>BST 701</td>
<td>Advanced Statistical Computing</td>
</tr>
<tr>
<td>CS 522</td>
<td>Data Structures and Algorithms II</td>
</tr>
<tr>
<td>CS 610</td>
<td>Advanced Artificial Intelligence</td>
</tr>
<tr>
<td>CS 613</td>
<td>Machine Learning</td>
</tr>
<tr>
<td>CS 620</td>
<td>Advanced Data Structure and Algorithms</td>
</tr>
<tr>
<td>CS 621</td>
<td>Approximation Algorithms</td>
</tr>
<tr>
<td>CS 623</td>
<td>Computational Geometry</td>
</tr>
<tr>
<td>CS 630</td>
<td>Cognitive Systems</td>
</tr>
<tr>
<td>CS 650</td>
<td>Program Generation and Optimization</td>
</tr>
<tr>
<td>CS 676</td>
<td>Parallel Programming</td>
</tr>
<tr>
<td>ECCE 622</td>
<td>Parallel Programming</td>
</tr>
<tr>
<td>ECES 522</td>
<td>Random Process & Spectral Analysis</td>
</tr>
<tr>
<td>ECES 523</td>
<td>Detection & Estimation Theory</td>
</tr>
<tr>
<td>EGMT 572</td>
<td>Statistical Data Analysis</td>
</tr>
<tr>
<td>EGMT 573</td>
<td>Operations Research</td>
</tr>
<tr>
<td>MATH 511</td>
<td>Applied Probability and Statistics II</td>
</tr>
<tr>
<td>MATH 512</td>
<td>Applied Probability and Statistics III</td>
</tr>
<tr>
<td>MATH 522</td>
<td>Numerical Analysis III</td>
</tr>
<tr>
<td>MEM 592</td>
<td>Applied Engr Analy Methods II</td>
</tr>
<tr>
<td>MEM 593</td>
<td>Applied Engr Analy Methods III</td>
</tr>
<tr>
<td>MEM 682</td>
<td>Finite Element Methods II</td>
</tr>
<tr>
<td>MEM 712</td>
<td>Computational Fluid Mechanics and Heat Transfer II</td>
</tr>
<tr>
<td>OPR 601</td>
<td>Managerial Decision Models and Simulation</td>
</tr>
<tr>
<td>OPR 622</td>
<td>Operations Research II</td>
</tr>
<tr>
<td>OPR 626</td>
<td>System Simulation</td>
</tr>
<tr>
<td>OPR 924</td>
<td>Operations Research Methods II</td>
</tr>
<tr>
<td>OPR 991</td>
<td>Simulation Theory and Applications</td>
</tr>
<tr>
<td>STAT 628</td>
<td>Applied Regression Analysis</td>
</tr>
<tr>
<td>STAT 630</td>
<td>Multivariate Analysis</td>
</tr>
</tbody>
</table>

Total Credits: 15.0
Certificate in Construction Management

Certificate Level: Graduate
Admission Requirements: Bachelor's degree
Certificate Type: Post-Baccalaureate
Number of Credits to Completion: 18.0
Instructional Delivery: Online
Calendar Type: Quarter
Expected Time to Completion: 2 years
Financial Aid Eligibility: Not aid eligible
Classification of Instructional Program (CIP) Code: 52.2001
Standard Occupational Classification (SOC) Code: 11-9021

About the Program

The certificate in Construction Management program teaches professionals the multidisciplinary skills required of effective senior construction managers. The program produces industry leaders that exhibit strong technical and managerial skills, apply scientific methodologies to problem solving, are critical thinkers, exercise creativity, and inject innovation into the process.

Students have the option of completing this 18.0 credit certificate in construction management as a standalone professional development credential, or as a step toward the MS in Construction Management program (https://drexel.edu/engineering/academics/departments/engineering-leadership-society/academic-programs/construction-management/programs/ms-construction-management/).

Admission Requirements

The admissions process for this program is the same as for the MS in Construction Management (http://www.drexel.edu/grad/apply/overview/).

Program Requirements

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMGT 510 Construction Control Techniques</td>
<td>3.0</td>
</tr>
<tr>
<td>CMGT 512 Cost Estimating and Bidding Strategies</td>
<td>3.0</td>
</tr>
<tr>
<td>CMGT 515 Risk Management in Construction</td>
<td>3.0</td>
</tr>
<tr>
<td>CMGT 525 Applied Construction Project Management</td>
<td>3.0</td>
</tr>
<tr>
<td>CMGT 528 Construction Contract Administration</td>
<td>3.0</td>
</tr>
<tr>
<td>CMGT 538 Strategic Management in Construction</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Total Credits 18.0

Additional Information

For more information, view the College of Engineering’s Construction Management (https://drexel.edu/engineering/academics/areas-of-study-programs/construction-management/) webpage or contact:

William Grogan
Email: wtg25@drexel.edu
Phone: 215-895-5943

Certificate in Engineering Management

Certificate Level: Graduate
Admission Requirements: Undergraduate degree in engineering or the sciences
Certificate Type: Post-Baccalaureate
Number of Credits to Completion: 15.0
Instructional Delivery: Online
Calendar Type: Quarter
Expected Time to Completion: 1 year
Financial Aid Eligibility: Not aid eligible
Classification of Instructional Program (CIP) Code: 15.1501
Standard Occupational Classification (SOC) Code: 11-9040
About the Program
This program is a superb training ground for engineers and scientists who want to obtain a solid foundation in critical areas in management, communications, economics, and finance without having to commit to the entire graduate program. After completing the program, students have the option of applying the earned credits toward a master’s degree in engineering management.

Admission Requirements
Admission to this program requires:

- A four-year Bachelor of Science degree in engineering from an ABET-accredited institution in the United States or an equivalent international institution. Bachelor's degrees in math or the physical sciences may also be considered for admission.
- Minimum cumulative undergraduate GPA of 3.0. If any other graduate work has been completed, the average GPA must be at least 3.0.
- Complete graduate school application
- Official transcripts from all universities or colleges and other post-secondary educational institutions (including trade schools) attended
- Two letters of recommendation, professional or academic (professional preferred)
- Resume
- A personal essay (prompt provided in the online application)
- International students must submit an Internet-based TOEFL (IBT = score of 94 or higher).

Continuing master's students pursuing other technical disciplines may also complete the certificate courses as electives with approval from their advisor (e.g., electrical engineering master's students may complete these four courses to satisfy four of their five elective requirements).

Program Requirements

<table>
<thead>
<tr>
<th>Required Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGMT 501 Leading and Managing Technical Workers</td>
<td>3.0</td>
</tr>
<tr>
<td>EGMT 504 Design Thinking for Engineering Communications</td>
<td>3.0</td>
</tr>
<tr>
<td>EGMT 531 Engineering Economic Evaluation & Analysis</td>
<td>3.0</td>
</tr>
<tr>
<td>EGMT 535 Financial Management</td>
<td>3.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Electives (Choose One)</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGMT 502 Analysis and Decision Methods for Technical Managers</td>
<td>3.0</td>
</tr>
<tr>
<td>EGMT 536 Advanced Financial Management for Engineers</td>
<td>3.0</td>
</tr>
<tr>
<td>EGMT 614 Marketing: Identifying Customer Needs</td>
<td>3.0</td>
</tr>
<tr>
<td>PROJ 501 Introduction to Project Management</td>
<td></td>
</tr>
<tr>
<td>SYSE 685 Systems Engineering Management</td>
<td></td>
</tr>
</tbody>
</table>

Total Credits 15.0

Sample Plan of Study

<table>
<thead>
<tr>
<th>First Year</th>
<th>Credits</th>
<th>Credits</th>
<th>Credits</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>EGMT 501</td>
<td>3.0</td>
<td>EGMT 504</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3</td>
<td>EGMT 531</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3</td>
<td>EGMT 535</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Credits</th>
<th>Credits</th>
<th>Credits</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>EGMT 614</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Credits 15

Additional Information
To learn more about the certificate or to apply for admission, please visit the Engineering Management (https://drexel.edu/engineering/academics/departments/construction-engineering-project-management-systems-engineering/academic-programs/graduate/engineering-management/certificate/) program page.

Post-Baccalaureate Certificate in Hardware Systems Engineering

Certificate Level: Graduate
Admissions Requirements: Bachelor’s degree
Certificate Type: Post-Baccalaureate
About the Program

This graduate certificate will enhance the skills of engineers who work in areas of product design and development related to a variety of industries, but mostly Department of Defense (DoD). In today's environment, managing the complexity of hardware product development requires technical knowledge and know-how, as well as system engineering approaches with a focus on the product development life cycle process. This graduate certificate program will leverage this competency to provide systems engineering thinking paired with technical depth in product development and design. This paring will enhance the skill set and talent of engineers who work in the field of hardware product design and development.

Admission Requirements

- BS in Electrical Engineering, Mechanical Engineering, Computer Science, or equivalent STEM BS degree
- A GPA of 3.0 and/or significant work experience

Program Requirements

Required System Engineering Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYSE 533</td>
<td>Systems Integration and Test</td>
<td>3.0</td>
</tr>
<tr>
<td>SYSE 685</td>
<td>Systems Engineering Management</td>
<td>3.0</td>
</tr>
<tr>
<td>SYSE 688</td>
<td>Systems Engineering Analysis</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Systems Engineering Course Elective

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYSE 530</td>
<td>Systems Engineering Design</td>
<td>3.0</td>
</tr>
<tr>
<td>or SYSE 531</td>
<td>Systems Architecture Development</td>
<td>3.0</td>
</tr>
<tr>
<td>or SYSE 682</td>
<td>Introduction to Systems Science</td>
<td>3.0</td>
</tr>
</tbody>
</table>

COE Technical Electives (2 Courses ECEC, ECEE, ECEP, ECET, ECES, ET, MEM or MATE)*

Total Credits 18.0

Sample Plan of Study

First Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Credits Winter</th>
<th>Credits Spring</th>
<th>Credits Summer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>SYSE 685 3.0</td>
<td>SYSE 688 3.0</td>
<td>SYSE 533 3.0</td>
</tr>
<tr>
<td>Winter</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Spring</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Summer</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Credits Winter</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>Technical Elective 1 3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Winter</td>
<td>Technical Elective 2 3.0</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Total Credits 18

* Technical Electives must be graduate level courses (500, 600 or 700 level)

Additional Information

To learn more about the certificate or to apply for admission, please visit the Systems Engineering (https://drexel.edu/engineering/academics/departments/engineering-leadership-society/academic-programs/systems-engineering/) or Construction-Engineering-Project-Management-Systems-Engineering/Academic-Programs/Graduate/Engineering-Management/Certificate/) program page.

Post-Baccalaureate Certificate in Healthy Indoor Environments

Certificate Level: Graduate
Admission Requirements: ABET accredited undergraduate BS degree in Architectural Engineering or equivalent (i.e., Civil Engineering, Mechanical Engineering, others).
Certificate Type: Post-Baccalaureate
Minimum Number of Credits to Completion: 9.0
About the Program

This program will educate post-baccalaureate students with the knowledge and skills necessary for assessing the state of existing buildings or designing new buildings through the lens of promoting healthy indoor environments and well-being of building occupants. It combines courses on indoor air quality, indoor airflow, outdoor pollution (which is transported indoors), and/or risk assessment to provide students with the engineering toolkit to conduct meaningful work in the healthy buildings and health-promoting HVAC industry markets. This certificate is responsive to the newly disseminated understanding of the role buildings play in reducing indoor disease transmission and elevating occupant performance and satisfaction. The certificate will train professionals such as architectural, environmental, civil, and mechanical engineers who do or want to work in the healthy buildings industry.

Program Requirements

Required Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE 550</td>
<td>Comfort Analysis and Indoor Air Quality</td>
<td>3.0</td>
</tr>
<tr>
<td>AE 561</td>
<td>Airflow Simulation in Built Environment</td>
<td>3.0</td>
</tr>
<tr>
<td>or ENVE 560</td>
<td>Fundamentals of Air Pollution Control</td>
<td></td>
</tr>
<tr>
<td>ENVE 727</td>
<td>Risk Assessment</td>
<td>3.0</td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>9.0</td>
</tr>
</tbody>
</table>

Sample Plan of Study

First Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Credits</th>
<th>Winter</th>
<th>Spring</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>3.0</td>
<td>AE 561</td>
<td>ENVE 727</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>or ENVE 560</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.0</td>
<td>ENVE 727</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Post-Baccalaureate Certificate in Naval Engineering

Certificate Level: Graduate
Admission Requirements: Bachelor's degree
Certificate Type: Post-Baccalaureate
Number of Credits to Completion: 12.0
Instructional Delivery: Online
Calendar Type: Quarter
Expected Time to Completion: 1 year
Financial Aid Eligibility: Not aid eligible
Classification of Instructional Program (CIP) Code: 14.2201
Standard Occupational Classification (SOC) Code: 11-9041

About the Program

The Post-Baccalaureate Certificate in Naval Engineering is designed for engineers from any discipline who work with the development, design, construction, operation, maintenance, or logistic support of US Naval ships and shipboard systems. Students will gain an overall view of shipboard engineering plants as well as learn to understand the basic design and operating principles of the propulsion, Hull, Mechanical, Electrical (HM&E) systems, and auxiliary systems of today's naval forces. Students will also learn the Department of Defense approach to systems engineering as applied to naval operations.

Upon completion of the certificate, students will be able to apply these learned principals and techniques to their jobs and ascertain success within their industry. The certificate is designed for naval engineers and practitioners at any level who desire to broaden their skills and increase their knowledge of naval engineering systems and principles.

Admission Requirements

A bachelor's degree in an engineering discipline from an ABET-accredited college or university is required. A bachelor's degree in the sciences (physics, mathematics, computer science, etc.) may also be acceptable. Applicants with degrees in the sciences may be required to take a number of undergraduate or post-baccalaureate courses. An undergraduate degree earned abroad must be deemed equivalent to a US bachelor's degree. A minimum 3.0 GPA (on a 4.0 scale) for a bachelor's degree as well as for any subsequent graduate-level work is required.
For students whose native language is not English and who do not hold a degree from a US institution, the Test of English as a Foreign Language (TOEFL) is required. TOEFL scores must be less than two years old to be considered. Minimum score of 94 must be achieved. Official documents of this exam must be submitted directly to the Graduate Admissions Office. Unofficial photocopies will not be accepted.

Other requirements include:

- Submission of an application
- Official, sealed college transcripts
- An essay
- Two or more letters of recommendation

Program Requirements

Required Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYSE 605</td>
<td>Naval Systems Engineering</td>
<td>3.0</td>
</tr>
<tr>
<td>SYSE 610</td>
<td>Naval Engineering for the 21st Century</td>
<td>3.0</td>
</tr>
<tr>
<td>Elective Courses (Choose 2)</td>
<td></td>
<td>6.0</td>
</tr>
<tr>
<td>SYSE 624</td>
<td>Systems Reliability, Availability & Maintainability Analysis</td>
<td></td>
</tr>
<tr>
<td>SYSE 533</td>
<td>Systems Integration and Test</td>
<td></td>
</tr>
<tr>
<td>SYSE 611</td>
<td>Advanced Naval Engineering</td>
<td></td>
</tr>
<tr>
<td>SYSE 688</td>
<td>Systems Engineering Analysis</td>
<td></td>
</tr>
</tbody>
</table>

Total Credits 12.0

Sample Plan of Study

<table>
<thead>
<tr>
<th>Year</th>
<th>Credits Winter</th>
<th>Credits Spring</th>
<th>Credits Summer</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Year</td>
<td>3.0 SYSE 610</td>
<td>3.0 SYSE 611</td>
<td>3.0 SYSE 533</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Post-Baccalaureate Certificate in Peace Engineering

Certificate Level: Graduate

Admission Requirements: Bachelor's degree

Certificate Type: Post-Baccalaureate

Number of Credits to Completion: 9.0

Instructional Delivery: Online

Calendar Type: Quarter

Expected Time to Completion: 1 year

Financial Aid Eligibility: Not aid eligible

Classification of Instructional Program (CIP) Code: 14.2701

Standard Occupational Classification (SOC) Code: 11-9041

About the Program

The Peace Engineering certificate will introduce students to the field of Peace Engineering and train students to develop systems-level analysis skills that are critical to the field's practice. The certificate program was designed in response to requests from federal and academic institutions for Drexel University to provide technical training in Peace Engineering without requiring a BS in Engineering or full-time enrollment at Drexel.

Courses for the certificate are selected from the first-year courses used in the Peace Engineering MS program and are appropriate for anyone with a bachelor’s degree in an applied or social science, or with appropriate work experience. The certificate will be made available to other colleges and universities for use as a minor so that students can learn about Peace Engineering without the parent university having to begin a dedicated program.

Admission Requirements

Bachelor's degree in an applied or social science, or appropriate work experience.

Program Requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PENG 540</td>
<td>Systems Engineering for Peacebuilding</td>
<td>3.0</td>
</tr>
<tr>
<td>PENG 545</td>
<td>Introduction to Peacebuilding for Engineers</td>
<td>3.0</td>
</tr>
<tr>
<td>PENG 550</td>
<td>Conflict Management for Engineers</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Total Credits 9.0
Sample Plan of Study

First Year

<table>
<thead>
<tr>
<th></th>
<th>Fall Credits</th>
<th>Winter Credits</th>
<th>Spring Credits</th>
<th>Total Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PENG 545</td>
<td>3.0</td>
<td>PENG 550</td>
<td>3.0</td>
<td>9</td>
</tr>
<tr>
<td>PENG 540</td>
<td>3.0</td>
<td>PENG 540</td>
<td>3.0</td>
<td></td>
</tr>
</tbody>
</table>

Total Credits 9

Certificate in Pharmaceutical and Medical Device Manufacturing

Certificate Level: Graduate
Admission Requirements: Bachelor of Science degree
Certificate Type: Post-Baccalaureate
Number of Credits to Completion: 18.0
Instructional Delivery: Online; Face-to-Face
Calendar Type: Quarter
Expected Time to Completion: 1 year
Financial Aid Eligibility: Not aid eligible
Classification of Instructional Program (CIP) Code: 51.2009
Standard Occupational Classification (SOC) Code: 29-1051

About the Program

Many chemical engineering graduates are working in the pharmaceutical Industry. The Chemical and Biological Engineering Department offers a certificate in Pharmaceutical Engineering that addresses many topics that are relevant to the design and manufacture of pharmaceutical products and medical devices while maintaining regulatory compliance. The certificate can be taken as a standalone certificate or be used to fulfill elective requirements for MS or PhD degrees in engineering disciplines.

Admission Requirements

Admission to this program requires:

- A four-year Bachelor of Science degree in engineering from an ABET-accredited institution in the United States or an equivalent international institution. Bachelor's degrees in math or the physical sciences may also be considered for admission.
- Minimum cumulative undergraduate GPA of 3.0. If any other graduate work has been completed, the average GPA must be at least 3.0.
- Complete graduate school application including official transcripts from all universities or colleges attended.
- Resume
- Personal essay

Master’s students pursuing other technical disciplines may also complete the certificate courses as electives with approval from their advisor.

Program Requirements

Core Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE 571</td>
<td>Pharmaceutical & Medical Device Manufacturing I (Core Courses)</td>
<td>3.0</td>
</tr>
<tr>
<td>CHE 572</td>
<td>Pharmaceutical & Medical Device Manufacturing II</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Foundation Courses (Choose Two)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE 560</td>
<td>Transport Phenomena in Biological Systems</td>
</tr>
<tr>
<td>CHE 562</td>
<td>Bioreactor Engineering</td>
</tr>
<tr>
<td>CHE 564</td>
<td>Unit Operations in Bioprocess Systems</td>
</tr>
<tr>
<td>PROJ 501</td>
<td>Introduction to Project Management</td>
</tr>
<tr>
<td>or EGMT 620</td>
<td>Engineering Project Management</td>
</tr>
</tbody>
</table>

Electives (Choose Two - including unused from Foundation Courses)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMES 501</td>
<td>Medical Sciences I</td>
</tr>
<tr>
<td>BMES 509</td>
<td>Entrepreneurship for Biomedical Engineering and Science</td>
</tr>
<tr>
<td>BMES 510</td>
<td>Biomedical Statistics</td>
</tr>
<tr>
<td>BMES 538</td>
<td>Biomedical Ethics and Law</td>
</tr>
<tr>
<td>BMES 588</td>
<td>Medical Device Development</td>
</tr>
<tr>
<td>BMES 604</td>
<td>Pharmacogenomics</td>
</tr>
<tr>
<td>BMES 660</td>
<td>Biomaterials I</td>
</tr>
<tr>
<td>BMES 661</td>
<td>Biomaterials II</td>
</tr>
<tr>
<td>BMES 621</td>
<td>Medical Instrumentation</td>
</tr>
<tr>
<td>BMES 622</td>
<td>Medical Instrumentation II</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td>BIO 500</td>
<td>Biochemistry I</td>
</tr>
<tr>
<td>BIO 615</td>
<td>Proteins</td>
</tr>
<tr>
<td>BIO 640</td>
<td>Biometry</td>
</tr>
<tr>
<td>BIO 641</td>
<td>Data Analysis in Biosciences</td>
</tr>
<tr>
<td>EGMT 531</td>
<td>Engineering Economic Evaluation & Analysis</td>
</tr>
<tr>
<td>EGMT 571</td>
<td>Engineering Statistics</td>
</tr>
<tr>
<td>EGMT 610</td>
<td>Ethics & Business Practices for Engineers</td>
</tr>
<tr>
<td>EGMT 614</td>
<td>Marketing: Identifying Customer Needs</td>
</tr>
<tr>
<td>EGMT 615</td>
<td>New Product Conceptualization, Justification, and Implementation</td>
</tr>
<tr>
<td>EGMT 616</td>
<td>Value Creation through New Product Development</td>
</tr>
</tbody>
</table>

Total Credits 18.0

Sample Plan of Study

<table>
<thead>
<tr>
<th></th>
<th>First Year</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fall</td>
<td>Winter</td>
<td>Spring</td>
</tr>
<tr>
<td>CHE 571</td>
<td>3.0</td>
<td>CHE 572</td>
<td>3.0 Foundation Course</td>
</tr>
<tr>
<td>Foundation Course I</td>
<td>3.0</td>
<td>Elective</td>
<td>3.0 Elective</td>
</tr>
</tbody>
</table>

Total Credits 18

Post-Baccalaureate Certificate in Planning and Design of Sustainable Infrastructure

Certificate Level: Graduate

Admission Requirements: ABET accredited undergraduate BS degree in Civil Engineering or equivalent (i.e., Architectural Engineering, Mechanical Engineering, others).

Certificate Type: Post-Baccalaureate

Number of Credits to Completion: 9.0

Instructional Delivery: Campus

Calendar Type: Quarter

Expected Time To Completion: 1 year

Financial Aid Eligibility: Not aid eligible

Classification of Instructional Program (CIP) Code: 04.0403

Standard Occupational Classification (SOC) Code: 19-3051

About the Program

This certificate in Planning and Design of Sustainable Infrastructure is a post-baccalaureate 9-credit MS certificate designed for individuals to develop and improve career-related skills in the area of sustainable engineering design. The program includes a set of community-based and environmental design and sustainability evaluation courses. Ideal candidates include sustainability specialists in different sectors, as well as individuals working on environmental evaluation in civil, architectural, and environmental engineering, urban planning, and construction management areas.

Program Requirements

Required Courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAEE 501</td>
<td>Community-Based Design</td>
<td>3.0</td>
</tr>
<tr>
<td>CIVE 542</td>
<td>Incorporating Sustainability Principles in Design</td>
<td>3.0</td>
</tr>
<tr>
<td>or CIVE 565</td>
<td>Urban Ecohydraulics</td>
<td></td>
</tr>
<tr>
<td>CIVE 564</td>
<td>Sustainable Water Resource Engineering</td>
<td>3.0</td>
</tr>
<tr>
<td>or ENVE 571</td>
<td>Environmental Life Cycle Assessment</td>
<td></td>
</tr>
</tbody>
</table>

Total Credits 9.0

Sample Plan of Study

<table>
<thead>
<tr>
<th></th>
<th>First Year</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fall</td>
<td>Winter</td>
<td>Spring</td>
</tr>
<tr>
<td>CAEE 501</td>
<td>3.0</td>
<td>CIVE 542 or 565</td>
<td>3.0 CIVE 564 or ENVE 571</td>
</tr>
</tbody>
</table>

Total Credits 9
Certificate in Real Estate

Certificate Level: Graduate
Admission Requirements: Bachelor's degree
Certificate Type: Post-Baccalaureate
Number of Credits to Completion: 18.0
Instructional Delivery: Online
Calendar Type: Quarter
Expected Time to Completion: 2 years
Financial Aid Eligibility: Not aid eligible
Classification of Instructional Program (CIP) Code: 52.1501
Standard Occupational Classification (SOC) Code: 11-9141

About the Program

This graduate certificate seeks to produce professionals with the knowledge, skills, and perspective required to be successful in the real estate development process and the industry as a whole. Students explore the knowledge and skills required to create, maintain, and build environments for living, working, and entertainment purposes.

Relevant issues include project finance, real estate as investments, design and construction, operations, development law, environmental remediation, public policy, market analysis, and architecture.

Students wishing to complete this certificate in the context of a master's degree should consider the MS in Construction Management (p. 47) with a concentration in Real Estate.

Program Requirements

 Requirements
<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>REAL 568</td>
<td>Real Estate Development</td>
<td>3.0</td>
</tr>
<tr>
<td>REAL 571</td>
<td>Advanced Real Estate Investment & Analysis</td>
<td>3.0</td>
</tr>
<tr>
<td>REAL 572</td>
<td>Advanced Market Research & Analysis</td>
<td>3.0</td>
</tr>
<tr>
<td>REAL 575</td>
<td>Real Estate Finance</td>
<td>3.0</td>
</tr>
<tr>
<td>REAL 577</td>
<td>Legal Issues in Real Estate Development</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td>3.0</td>
</tr>
<tr>
<td>REAL 573</td>
<td>Sales & Marketing of Real Estate</td>
<td></td>
</tr>
<tr>
<td>REAL 574</td>
<td>Real Estate Economics in Urban Markets</td>
<td></td>
</tr>
<tr>
<td>REAL 576</td>
<td>Real Estate Valuation & Analysis</td>
<td></td>
</tr>
</tbody>
</table>

Total Credits 18.0

Additional Information

For more information contact:

Dr. Christine Fiori
Email: cmf356@drexel.edu
215-895-0925

Post-Baccalaureate Certificate in Smart Building Systems

Certificate Level: Graduate
Admission Requirements: Bachelor's degree
Certificate Type: Post-Baccalaureate
Number of Credits to Completion: 9.0
Instructional Delivery: Campus
Calendar Type: Quarter
Expected Time to Completion: 1 year
Financial Aid Eligibility: Not Aid eligible
Classification of Instructional Program (CIP) Code: 14.0401
Standard Occupational Classification (SOC) Code: 11-9041

About the Program

This program will educate post-baccalaureate students with the knowledge and skills necessary for designing new or commissioning existing smart building systems for higher building performance. It integrates courses on the topics of intelligent buildings, building control systems, building energy...
analytics, human-building interaction, fault detection and diagnosis, machine learning/artificial intelligence etc. to provide students with the scientific and engineering knowledge necessary to make buildings smarter with improved occupant well-being and sustainability. The certificate will train professionals such as architectural, mechanical, electrical, civil, and environmental engineers who do or want to work in the smart buildings industry.

Admission Requirements
ABET accredited undergraduate BS degree in Architectural Engineering or equivalent (i.e., Civil Engineering, Mechanical Engineering, others).

Program Requirements

Required Courses:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE 510</td>
<td>Intelligent Buildings</td>
<td>3.0</td>
</tr>
<tr>
<td>AE 551</td>
<td>Building Energy Systems I</td>
<td>3.0</td>
</tr>
<tr>
<td>or AE 552</td>
<td>Building Energy Systems II</td>
<td></td>
</tr>
<tr>
<td>AE 555</td>
<td>Data Acquisition and Analytics in Built Environment</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Total Credits 9.0

Sample Plan of Study

First Year

<table>
<thead>
<tr>
<th>Credits</th>
<th>First Year</th>
<th>Credits</th>
<th>First Year</th>
<th>Credits</th>
<th>First Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE 555</td>
<td></td>
<td>3.0</td>
<td>AE 510</td>
<td>3.0</td>
<td>AE 551 or 552</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credits 9

Post-Baccalaureate Certificate in Structures Forensics

Certificate Level: Graduate

Admission Requirements: ABET accredited undergraduate BS degree in Civil Engineering or equivalent (i.e., Architectural Engineering, Mechanical Engineering, others).

Certificate Type: Post-Baccalaureate

Number of Credits to Completion: 9.0

Instructional Delivery: Campus

Calendar Type: Quarter

Expected Time To Completion: 1 year

Financial Aid Eligibility: Not aid eligible

Classification of Instructional Program (CIP) Code: 14.0803

Standard Occupational Classification (SOC) Code: 11-9041

About the Program

This program will educate graduate students with the knowledge and skills necessary for assessing existing structures and structural systems, starting with an in-depth education of mechanics, followed by the use of sensing systems for infrastructure assessment, along with elements of forensics where past structural failures are analyzed so as to prevent similar structural failures in new or existing structural systems.

This certificate is responsive to the condition of the aging US infrastructure. For instance, the average bridge age in US is above 40 years. The certificate will train professionals such as civil and architectural engineers and designers on advanced structural engineering concepts such as NDE, structural assessment, and forensics.

Program Requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVE 540</td>
<td>Forensic Structural Engineering</td>
<td>3.0</td>
</tr>
<tr>
<td>CIVE 605</td>
<td>Advanced Mechanics of Materials</td>
<td>3.0</td>
</tr>
<tr>
<td>CIVE 615</td>
<td>Infrastructure Condition Evaluation</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Total Credits 9.0

Sample Plan of Study

First Year

<table>
<thead>
<tr>
<th>Credits</th>
<th>First Year</th>
<th>Credits</th>
<th>First Year</th>
<th>Credits</th>
<th>First Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVE 615</td>
<td></td>
<td>3.0</td>
<td>CIVE 605</td>
<td>3.0</td>
<td>CIVE 540</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credits 9
Certificate in Sustainability and Green Construction

Certificate Level: Graduate
Admission Requirements: Bachelor's degree
Certificate Type: Post-Baccalaureate
Number of Credits to Completion: 15.0
Instructional Delivery: Online
Calendar Type: Quarter
Expected Time to Completion: 1 year
Financial Aid Eligibility: Not aid eligible
Classification of Instructional Program (CIP) Code: 52.2001
Standard Occupational Classification (SOC) Code: 11-9021

About the Program

The architectural, engineering, and construction community faces the daunting task of providing a built environment which is in harmony with the natural environment—meeting the current needs of society without jeopardizing the ability of future generations to meet their needs. Sustainable development means integrating the decision-making process across the project team, so that every decision is made with an eye to the greatest long-term benefits.

The certificate in Sustainability and Green Construction is a flexible, part-time post-baccalaureate program, focused on the sustainable aspects of the construction process. Students have the opportunity to complete all requirements within one and a half years.

Currently, in the Leadership in Energy and Environmental Design (LEED) green building rating system, the construction process represents a significant portion of the effort required to achieve high performance building programs. This certificate program is intended to explore these concepts in detail. Credits from this certificate will transfer toward a Master of Science in Construction Management.

Program Requirements

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMGT 535 Community Impact Analysis</td>
<td>3.0</td>
</tr>
<tr>
<td>CMGT 545 Sustainable Principles & Practices</td>
<td>3.0</td>
</tr>
<tr>
<td>CMGT 546 Sustainable Technologies</td>
<td>3.0</td>
</tr>
<tr>
<td>CMGT 547 LEED Concepts</td>
<td>3.0</td>
</tr>
<tr>
<td>CMGT 558 Community Sustainability</td>
<td>3.0</td>
</tr>
<tr>
<td>Total Credits</td>
<td>15.0</td>
</tr>
</tbody>
</table>

Additional Information

For more information, view the College of Engineering's Construction Management (https://drexel.edu/engineering/academics/departments/construction-engineering-project-management-systems-engineering/academic-programs/undergraduate/construction-management/) webpage or contact:

Dr. Christine Fiori
Email: cmf356@drexel.edu
215-895-0925

Certificate in Systems Design and Development

Certificate Level: Graduate
Admission Requirements: Bachelor's degree in engineering or other science
Certificate Type: Post-Baccalaureate
Number of Credits to Completion: 15.0
Instructional Delivery: Online
Calendar Type: Quarter
Expected Time to Completion: 1 year
Financial Aid Eligibility: Not aid eligible
Classification of Instructional Program (CIP) Code: 14.2701
Standard Occupational Classification (SOC) Code: 17-2199

About the Program

Note: New students are no longer being accepted into this certificate for Academic Year 2022-2023. Please contact Rob Lazzaro (sg77ybmb@drexel.edu) and Rick Grandrino (rag28@drexel.edu) for additional information.
The courses in this certificate focus on teaching students engineering design and management of large complex systems, including software intensive systems. By exposing the students to the systems engineering design body of knowledge and allowing them to develop systems skills in stimulating and challenging environments, they will be prepared to become industry leaders who can make a significant difference. Upon completion of this certificate, the students will be able to design, lead, and manage any systems engineering effort regardless of size, complexity, technologies, or engineering emphasis.

Admission Requirements

Degree and GPA Requirement

A bachelor's degree in an engineering discipline from an ABET-accredited college or university is required. A bachelor's degree in the sciences (physics, mathematics, computer science, etc.) may also be acceptable. Applicants with degrees in the sciences may be required to take a number of undergraduate or post-baccalaureate courses. An undergraduate degree earned abroad must be deemed equivalent to a US bachelor's degree. A minimum 3.0 GPA (on a 4.0 scale) for a bachelor's degree as well as for any subsequent graduate-level work is required.

TOEFL Requirement

For students whose native language is not English and who do not hold a degree from a US institution, the Test of English as a Foreign Language (TOEFL) is required. TOEFL scores must be less than two years old to be considered. Minimum total score of 94 (internet-based). Official documents of this exam must be submitted directly to the Graduate Admissions Office. Unofficial photocopies will not be accepted.

Other Requirements

• Submission of an application
• Official, sealed college transcripts
• An essay
• Two or more letters of recommendation

Requirements

SYSE 685 Systems Engineering Management 3.0
SYSE 688 Systems Engineering Analysis 3.0
SYSE 530 Systems Engineering Design 3.0
SYSE 531 Systems Architecture Development 3.0
SYSE 532 Software Systems Engineering 3.0

Total Credits 15.0

Certificate in Systems Engineering

Certificate Level: Graduate
Admission Requirements: Bachelor's degree in engineering or other science
Certificate Type: Graduate Certificate
Number of Credits to Completion: 18.0
Instructional Delivery: Online
Calendar Type: Quarter
Expected Time to Completion: 1.5 years
Financial Aid Eligibility: Not aid eligible
Classification of Instructional Program (CIP) Code: 14.2701
Standard Occupational Classification (SOC) Code: 17-2199

About the Program

The Graduate Certificate in Systems Engineering teaches students the process and art of systems engineering. Students learn systems engineering tools and skills to integrate user needs, manage requirements, conduct technological evaluation, and build elaborate system architectures. The courses devote particular attention to knowledge, skills, mindset, and leadership qualities needed to be a successful systems engineering leader in the field.

This graduate certificate is certified by the International Council on Systems Engineering (INCOSE), and it is one of only six curricula in the world to hold this distinction. Graduates will automatically qualify for the CSEP (Certified Systems Engineering Professional) or ASEP (Associate Systems Engineering Professional) without having to take the certification exam.

Any students working or interested in the field of systems engineering should consider pursuing and completing this certificate.
Admission Requirements

Degree and GPA Requirement

A bachelor's degree in an engineering discipline from an ABET-accredited college or university is required. A bachelor's degree in the sciences (physics, mathematics, computer science, etc.) may also be acceptable. A 3.0 GPA (on a 4.0 scale) for a bachelor’s degree as well as for any subsequent graduate-level work is required.

TOEFL Requirement

For students whose native language is not English and who do not hold a degree from a US institution, the Test of English as a Foreign Language (TOEFL) is required. TOEFL scores must be less than two years old to be considered. Minimum total score of 94 (internet-based). Official documents of this exam must be submitted directly to the Graduate Admissions Office. Unofficial photocopies will not be accepted.

Other Requirements

• Submission of an application
• Official, sealed college transcripts
• An essay
• Two or more letters of recommendation

Program Requirements

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYSE 682</td>
<td>Introduction to Systems Science</td>
<td>3.0</td>
</tr>
<tr>
<td>SYSE 685</td>
<td>Systems Engineering Management</td>
<td>3.0</td>
</tr>
<tr>
<td>SYSE 688</td>
<td>Systems Engineering Analysis</td>
<td>3.0</td>
</tr>
<tr>
<td>SYSE 520</td>
<td>Global Sustainment and Integrated Logistics</td>
<td>3.0</td>
</tr>
<tr>
<td>SYSE 640</td>
<td>Model Based Systems Engineering</td>
<td>3.0</td>
</tr>
<tr>
<td>SYSE 690</td>
<td>Modeling and Simulation</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Total Credits 18.0

Sample Plan of Study

<table>
<thead>
<tr>
<th>Year</th>
<th>Fall</th>
<th>Credits Winter</th>
<th>Credits Spring</th>
<th>Credits Summer</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SYSE 685</td>
<td>3.0 SYSE 520</td>
<td>3.0 SYSE 690</td>
<td>3.0 SYSE 688</td>
<td>3.0</td>
</tr>
<tr>
<td>Second Year</td>
<td>SYSE 682</td>
<td>3.0 SYSE 640</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Credits 18

Certificate in Systems Engineering Analysis

Certificate Level: Graduate

Admission Requirements: Bachelor's degree in engineering or other science

Certificate Type: Post-Baccalaureate

Number of Credits to Completion: 15.0

Instructional Delivery: Online

Calendar Type: Quarter

Expected Time to Completion: 1.5 years

Financial Aid Eligibility: Not aid eligible

Classification of Instructional Program (CIP) Code: 15.1501

Standard Occupational Classification (SOC) Code: 11-9041

About the Program

Note: New students are no longer being accepted into this certificate for Academic Year 2022-2023. Please contact Rob Lazzaro (sg77ybmm@drexel.edu) and Rick Grandrino (rag28@drexel.edu) for additional information.

The courses in this certificate focus on teaching students statistical analysis and the use of mathematical models to solve a variety of problems. The courses are structured to discuss theory, process, and application. The primary emphasis is application, as the objectives of the courses are to provide students with skills to model problems, determine a quantitative solution, and perform sensitivity analysis. Theory and process are also studied so
students learn how the models work by understanding the underlying theory associated with a particular model. Understanding of theory also enforces skills to conduct sensitivity analyses and helps answer "what if?" type questions. Upon successful completion of this certificate, students will be able to formulate mathematical models and solve quantitative problems.

Any students interested in decision sciences or advanced mathematical modeling and analysis should consider pursuing this certification.

Admission Requirements

Degree and GPA Requirement

A bachelor's degree in an engineering discipline from an ABET-accredited college or university is required. A bachelor's degree in the sciences (physics, mathematics, computer science, etc.) may also be acceptable. An undergraduate degree earned abroad must be deemed equivalent to a US bachelor's degree. A minimum 3.0 GPA (on a 4.0 scale) for a bachelor's degree as well as for any subsequent graduate-level work is required.

TOEFL Requirement

For students whose native language is not English and who do not hold a degree from a US institution, the Test of English as a Foreign Language (TOEFL) is required. TOEFL scores must be less than two years old to be considered. Minimum total score of 94 (internet-based). Official documents of this exam must be submitted directly to the Graduate Admissions Office. Unofficial photocopies will not be accepted.

Other Requirements

- Submission of an application
- Official, sealed college transcripts
- An essay
- Two or more letters of recommendation

Requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGMT 571</td>
<td>Engineering Statistics</td>
<td>3.0</td>
</tr>
<tr>
<td>EGMT 572</td>
<td>Statistical Data Analysis</td>
<td>3.0</td>
</tr>
<tr>
<td>EGMT 573</td>
<td>Operations Research</td>
<td>3.0</td>
</tr>
<tr>
<td>SYSE 525</td>
<td>Statistical Modeling & Experimental Design</td>
<td>3.0</td>
</tr>
<tr>
<td>SYSE 690</td>
<td>Modeling and Simulation</td>
<td>3.0</td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>15.0</td>
</tr>
</tbody>
</table>

Certificate in Systems Engineering Integrated Logistics

Certificate Level: Graduate

Admission Requirements: Bachelor's degree in engineering or other science

Certificate Type: Graduate Certificate

Number of Credits to Completion: 18.0

Instructional Delivery: Online

Calendar Type: Quarter

Expected Time to Completion: 1.5 years

Financial Aid Eligibility: Not aid eligible

Classification of Instructional Program (CIP) Code: 14.2701

Standard Occupational Classification (SOC) Code: 17-2199

About the Program

Note: New students are no longer being accepted into this certificate for Academic Year 2022-2023. Please contact Rob Lazzaro (sg77ybmm@drexel.edu) and Rick Grandrino (rag28@drexel.edu) for additional information.

The courses in this certificate focus on teaching students to understand, analyze, and enhance the performance of complex and dynamic global supply chains. The certificate is structured with three quantitative courses: EGMT 571, EGMT 572, and EGMT 573 that will provide students with mathematical and statistical tools to analyze and evaluate the supply chain.

The remaining three courses (SYSE 520, SYSE 522, and SYSE 690) allow students to understand the dynamic and complex nature of global supply chains from a systems engineering perspective. They also teach students to implement the quantitative tools learned during the first three courses to efficiently manage the supply chain. Students will evaluate and analyze diverse types of supply chains through case studies, and they will analyze and discuss the best practices in supply chains across the world.
All affiliated courses may be applied to the Master of Science in Systems Engineering (p. 117) and the Master of Science in Engineering Management (p. 76).

Admission Requirements

Degree and GPA Requirement

A bachelor's degree in an engineering discipline from an ABET-accredited college or university is required. A bachelor’s degree in the sciences (physics, mathematics, computer science, etc.) may also be acceptable. An undergraduate degree earned abroad must be deemed equivalent to a US bachelor's degree. A minimum 3.0 GPA (on a 4.0 scale) for a bachelor's degree as well as for any subsequent graduate-level work is required.

TOEFL Requirement

For students whose native language is not English and who do not hold a degree from a US institution, the Test of English as a Foreign Language (TOEFL) is required. TOEFL scores must be less than two years old to be considered. Minimum total score of 94 (internet-based). Official documents of this exam must be submitted directly to the Graduate Admissions Office. Unofficial photocopies will not be accepted.

Other Requirements

- Submission of an application
- Official, sealed college transcripts
- An essay
- Two or more letters of recommendation

Requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGMT 571</td>
<td>Engineering Statistics</td>
<td>3.0</td>
</tr>
<tr>
<td>EGMT 572</td>
<td>Statistical Data Analysis</td>
<td>3.0</td>
</tr>
<tr>
<td>EGMT 573</td>
<td>Operations Research</td>
<td>3.0</td>
</tr>
<tr>
<td>SYSE 690</td>
<td>Modeling and Simulation</td>
<td>3.0</td>
</tr>
<tr>
<td>SYSE 520</td>
<td>Global Sustainment and Integrated Logistics</td>
<td>3.0</td>
</tr>
<tr>
<td>SYSE 522</td>
<td>Engineering Supply Chain Systems</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Total Credits: 18.0

Certificate in Systems Reliability Engineering

Certificate Level: Graduate

Admission Requirements: Bachelor's degree in engineering or other science

Certificate Type: Graduate Certificate

Number of Credits to Completion: 18.0

Instructional Delivery: Online

Calendar Type: Quarter

Expected Time to Completion: 1.5 years

Financial Aid Eligibility: Not aid eligible

Classification of Instructional Program (CIP) Code: 14.2701

Standard Occupational Classification (SOC) Code: 17-2199

About the Program

Note: New students are no longer being accepted into this certificate for Academic Year 2022-2023. Please contact Rob Lazzaro (sg77ybbm@drexel.edu) and Rick Grandrino (rag28@drexel.edu) for additional information.

This certificate teaches students to design for sustainability and reliability of systems during the life-cycle of an operation. The first three courses teach students the analytical tools required to perform reliability and maintainability modeling and analysis. The final three courses will focus on systems reliability, maintainability, and availability analysis (RM&A) for systems. The courses have an application to all phases of the systems engineering process, including requirements definition through systems design and development. The students will learn the process that starts with RM&A in the initial phases of development, conducting trade-off analysis during the system development phase to optimize reliability and availability of the system. The students will also learn to improve the reliability and availability of a product or a system by modeling and analysis of systems reliability using probability models.

Upon completion of the courses, students will be able to understand RM&A and modeling and apply reliability models for a product or system during its life-cycle: design, production, and warranty. Additionally, students will learn to conduct trade-off analysis to enhance availability and reliability of the system and to develop maintenance concepts that are cost effective and support sustainment of the system.
Admission Requirements

Degree and GPA Requirement

A bachelor's degree in an engineering discipline from an ABET-accredited college or university is required. A bachelor's degree in the sciences (physics, mathematics, computer science, etc.) may also be acceptable. An undergraduate degree earned abroad must be deemed equivalent to a US bachelor's degree. A minimum 3.0 GPA (on a 4.0 scale) for a bachelor's degree as well as for any subsequent graduate-level work is required.

TOEFL Requirement

For students whose native language is not English and who do not hold a degree from a US institution, the Test of English as a Foreign Language (TOEFL) is required. TOEFL scores must be less than two years old to be considered. Minimum total score of 94 (internet-based). Official documents of this exam must be submitted directly to the Graduate Admissions Office. Unofficial photocopies will not be accepted.

Other Requirements

• Submission of an application
• Official, sealed college transcripts
• An essay
• Two or more letters of recommendation

Program Requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGMT 571</td>
<td>Engineering Statistics</td>
<td>3.0</td>
</tr>
<tr>
<td>EGMT 572</td>
<td>Statistical Data Analysis</td>
<td>3.0</td>
</tr>
<tr>
<td>EGMT 573</td>
<td>Operations Research</td>
<td>3.0</td>
</tr>
<tr>
<td>SYSE 688</td>
<td>Systems Engineering Analysis</td>
<td>3.0</td>
</tr>
<tr>
<td>SYSE 523</td>
<td>Systems Reliability Engineering</td>
<td>3.0</td>
</tr>
<tr>
<td>SYSE 524</td>
<td>Systems Reliability, Availability & Maintainability Analysis</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Total Credits 18.0
Index

A
Architectural Engineering ... 3
Architectural Engineering PhD .. 7

C
Certificate in Construction Management 125
Certificate in Engineering Management 125
Certificate in Pharmaceutical and Medical Device Manufacturing .. 130
Certificate in Real Estate .. 132
Certificate in Sustainability and Green Construction 134
Certificate in Systems Design and Development 134
Certificate in Systems Engineering ... 135
Certificate in Systems Engineering Analysis 136
Certificate in Systems Engineering Integrated Logistics 137
Certificate in Systems Reliability Engineering 138
Chemical Engineering .. 12
Chemical Engineering PhD ... 17
Civil Engineering .. 22
Civil Engineering PhD ... 28
Computer Engineering .. 35
Computer Engineering PhD .. 41
Construction Management .. 47
Cybersecurity ... 50

E
Electrical Engineering .. 57
Electrical Engineering PhD ... 63
Electrical Engineering/Telecommunications Engineering 70
Engineering Management .. 76
Engineering Technology .. 79
Environmental Engineering ... 81
Environmental Engineering PhD ... 85

G
Graduate Curricula ... 3
Graduate Minor in Computational Engineering 123

M
Machine Learning Engineering ... 90
Materials Science and Engineering ... 92
Materials Science and Engineering PhD 96
Mechanical Engineering and Mechanics 100
Mechanical Engineering and Mechanics PhD 106

N
Nanomaterials .. 110

P
Peace Engineering ... 113
Post-Baccalaureate Certificate in Hardware Systems Engineering ... 126
Post-Baccalaureate Certificate in Healthy Indoor Environments 127
Post-Baccalaureate Certificate in Naval Engineering 128
Post-Baccalaureate Certificate in Peace Engineering 129
Post-Baccalaureate Certificate in Planning and Design of Sustainable Infrastructure ... 131
Post-Baccalaureate Certificate in Smart Building Systems 132
Post-Baccalaureate Certificate in Structures Forensics 133

R
Robotics and Autonomy ... 115

T
The College of Engineering ... 3
the Internet of Things ... 121

V
Vince and Judy Vidas Program in Systems Engineering 117